BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Australia
1 × Brazil
1 × Canada
1 × Ireland
1 × Russia
1 × Singapore
1 × Switzerland
2 × China
2 × The Netherlands
2 × United Kingdom
5 × USA
Collaborated with:
F.Raiber D.Carmel A.Shtok L.Lee M.Bendersky E.Krikon C.Domshlak I.G.Kalmanovich S.Hummel H.Raviv M.Tennenholtz O.Rom S.Khalaman D.Metzler A.K.Kozorovitzky L.Zighelnic E.Rabinovich H.Roitman K.Collins-Thompson M.Sondak L.Meister M.Winaver P.Izsak G.Markovits G.Katz B.Shapira L.Rokach
Talks about:
queri (18) cluster (17) retriev (15) base (13) predict (11) document (10) perform (10) search (9) model (9) rank (9)

Person: Oren Kurland

DBLP DBLP: Kurland:Oren

Contributed to:

ECIR 20142014
SIGIR 20142014
CIKM 20132013
ECIR 20132013
SIGIR 20132013
CIKM 20122012
SIGIR 20122012
SIGIR 20112011
CIKM 20102010
SIGIR 20102010
CIKM 20092009
SIGIR 20092009
ECIR 20082008
SIGIR 20082008
SIGIR 20072007
SIGIR 20062006
SIGIR 20052005
SIGIR 20042004

Wrote 42 papers:

ECIR-2014-Kurland #clustering #information retrieval
The Cluster Hypothesis in Information Retrieval (OK), pp. 823–826.
SIGIR-2014-IzsakRKT
The search duel: a response to a strong ranker (PI, FR, OK, MT), pp. 919–922.
SIGIR-2014-KatzSKSR #performance #predict #query
Wikipedia-based query performance prediction (GK, AS, OK, BS, LR), pp. 1235–1238.
SIGIR-2014-RabinovichRK #feedback #retrieval
Utilizing relevance feedback in fusion-based retrieval (ER, OR, OK), pp. 313–322.
SIGIR-2014-RaiberK #predict
Query-performance prediction: setting the expectations straight (FR, OK), pp. 13–22.
SIGIR-2014-RaiberK14a #clustering #correlation #effectiveness #retrieval #testing
The correlation between cluster hypothesis tests and the effectiveness of cluster-based retrieval (FR, OK), pp. 1155–1158.
SIGIR-2014-RavivKC #performance #predict #query #retrieval
Query performance prediction for entity retrieval (HR, OK, DC), pp. 1099–1102.
SIGIR-2014-RoitmanHK #using
Using the cross-entropy method to re-rank search results (HR, SH, OK), pp. 839–842.
CIKM-2013-CarmelSK #retrieval
Position-based contextualization for passage retrieval (DC, AS, OK), pp. 1241–1244.
ECIR-2013-RaiberK #effectiveness #metric #predict #using
Using Document-Quality Measures to Predict Web-Search Effectiveness (FR, OK), pp. 134–145.
SIGIR-2013-Kurland #clustering #information retrieval
The cluster hypothesis in information retrieval (OK), p. 1126.
SIGIR-2013-RaiberCK #optimisation
Shame to be sham: addressing content-based grey hat search engine optimization (FR, KCT, OK), pp. 1013–1016.
SIGIR-2013-RaiberK #clustering #documentation #markov #random #ranking #using
Ranking document clusters using markov random fields (FR, OK), pp. 333–342.
SIGIR-2013-RavivKC #clustering
The cluster hypothesis for entity oriented search (HR, OK, DC), pp. 841–844.
SIGIR-2013-SondakSK #predict #query
Estimating query representativeness for query-performance prediction (MS, AS, OK), pp. 853–856.
CIKM-2012-KrikonCK #performance #predict #retrieval
Predicting the performance of passage retrieval for question answering (EK, DC, OK), pp. 2451–2454.
CIKM-2012-KurlandRS #clustering #predict #ranking
Query-performance prediction and cluster ranking: two sides of the same coin (OK, FR, AS), pp. 2459–2462.
CIKM-2012-KurlandSHRCR #framework #predict #probability
Back to the roots: a probabilistic framework for query-performance prediction (OK, AS, SH, FR, DC, OR), pp. 823–832.
CIKM-2012-MarkovitsSKC #performance #predict #query #retrieval
Predicting query performance for fusion-based retrieval (GM, AS, OK, DC), pp. 813–822.
CIKM-2012-RaiberK #clustering #retrieval #web
Exploring the cluster hypothesis, and cluster-based retrieval, over the web (FR, OK), pp. 2507–2510.
CIKM-2012-RaiberKT #estimation #using #web
Content-based relevance estimation on the web using inter-document similarities (FR, OK, MT), pp. 1769–1773.
SIGIR-2012-CarmelK #information retrieval #performance #predict #query
Query performance prediction for IR (DC, OK), pp. 1196–1197.
SIGIR-2012-HummelSRKC
Clarity re-visited (SH, AS, FR, OK, DC), pp. 1039–1040.
SIGIR-2012-KhalamanK
Utilizing inter-document similarities in federated search (SK, OK), pp. 1169–1170.
SIGIR-2012-MetzlerK #information retrieval
Experimental methods for information retrieval (DM, OK), pp. 1185–1186.
SIGIR-2011-KozorovitzkyK #clustering
Cluster-based fusion of retrieved lists (AKK, OK), pp. 893–902.
SIGIR-2011-KrikonK #ad hoc #feedback #retrieval
Utilizing minimal relevance feedback for ad hoc retrieval (EK, OK), pp. 1099–1100.
CIKM-2010-RaiberK #documentation #identification #on the
On identifying representative relevant documents (FR, OK), pp. 99–108.
SIGIR-2010-ShtokKC #modelling #predict #statistics #using
Using statistical decision theory and relevance models for query-performance prediction (AS, OK, DC), pp. 259–266.
CIKM-2009-KrikonKB #ranking
Utilizing inter-passage and inter-document similarities for re-ranking search results (EK, OK, MB), pp. 1597–1600.
SIGIR-2009-KalmanovichK #clustering #query
Cluster-based query expansion (IGK, OK), pp. 646–647.
SIGIR-2009-MeisterKK #clustering #documentation #retrieval
Integrating clusters created offline with query-specific clusters for document retrieval (LM, OK, IGK), pp. 706–707.
ECIR-2008-BenderskyK #documentation #modelling #retrieval
Utilizing Passage-Based Language Models for Document Retrieval (MB, OK), pp. 162–174.
SIGIR-2008-BenderskyK #graph #ranking #using
Re-ranking search results using document-passage graphs (MB, OK), pp. 853–854.
SIGIR-2008-Kurland #approach #clustering #documentation #ranking
The opposite of smoothing: a language model approach to ranking query-specific document clusters (OK), pp. 171–178.
SIGIR-2008-KurlandD #approach #clustering
A rank-aggregation approach to searching for optimal query-specific clusters (OK, CD), pp. 547–554.
SIGIR-2008-ZighelnicK #query #robust
Query-drift prevention for robust query expansion (LZ, OK), pp. 825–826.
SIGIR-2007-WinaverKD #framework #modelling #query #robust #towards
Towards robust query expansion: model selection in the language modeling framework (MW, OK, CD), pp. 729–730.
SIGIR-2006-KurlandL #clustering #exclamation #modelling
Respect my authority!: HITS without hyperlinks, utilizing cluster-based language models (OK, LL), pp. 83–90.
SIGIR-2005-KurlandL #modelling #rank #ranking #using
PageRank without hyperlinks: structural re-ranking using links induced by language models (OK, LL), pp. 306–313.
SIGIR-2005-KurlandLD #clustering #modelling #pseudo #using
Better than the real thing?: iterative pseudo-query processing using cluster-based language models (OK, LL, CD), pp. 19–26.
SIGIR-2004-KurlandL #ad hoc #corpus #information retrieval #modelling
Corpus structure, language models, and ad hoc information retrieval (OK, LL), pp. 194–201.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.