Travelled to:
1 × Australia
1 × Canada
1 × Germany
1 × Portugal
10 × USA
Collaborated with:
B.Rosenfeld Y.Aumann M.Koppel A.M.Segre M.Fresko A.Zilberstein W.Klösgen B.Rosenfeld ∅ H.Hirsh I.Dagan Y.Liberzon Y.Schler L.H.Ungar O.Netzer A.Peretz J.Schler J.Stoppi A.Amir G.Piatetsky-Shapiro R.Grossman C.Djeraba L.Getoor M.J.Zaki K.Ankori
Talks about:
mine (6) extract (4) document (3) inform (3) rule (3) data (3) knowledg (2) approxim (2) approach (2) collect (2)
Person: Ronen Feldman
DBLP: Feldman:Ronen
Contributed to:
Wrote 16 papers:
- KDD-2015-FeldmanNPR #mining #online #predict
- Utilizing Text Mining on Online Medical Forums to Predict Label Change due to Adverse Drug Reactions (RF, ON, AP, BR), pp. 1779–1788.
- CIKM-2008-RosenfeldFU #classification #sequence #using #web
- Using sequence classification for filtering web pages (BR, RF, LHU), pp. 1355–1356.
- CIKM-2007-RosenfeldF #clustering #identification
- Clustering for unsupervised relation identification (BR, RF), pp. 411–418.
- KDD-2006-Piatetsky-ShapiroGDFGZ #challenge #data mining #mining #question
- Is there a grand challenge or X-prize for data mining? (GPS, RG, CD, RF, LG, MJZ), pp. 954–956.
- CIKM-2005-FreskoRF #approach #hybrid
- A hybrid approach to NER by MEMM and manual rules (MF, BR, RF), pp. 361–362.
- CIKM-2004-RosenfeldFFSA #approach #hybrid #information management #named
- TEG: a hybrid approach to information extraction (BR, RF, MF, JS, YA), pp. 589–596.
- CIKM-2002-RosenfeldFA #documentation #layout #visual notation
- Structural extraction from visual layout of documents (BR, RF, YA), pp. 203–210.
- CIKM-2001-FeldmanALASR #independence #information management
- A Domain Independent Environment for Creating Information Extraction Modules (RF, YA, YL, KA, YS, BR), pp. 586–588.
- KDD-2000-FeldmanLRSS #approximate #bias #framework #information management #specification
- A framework for specifying explicit bias for revision of approximate information extraction rules (RF, YL, BR, YS, JS), pp. 189–197.
- KDD-T-1999-Feldman #mining #semistructured data
- Mining Unstructured Data (RF), pp. 182–236.
- KDD-1997-FeldmanAAZK #documentation #keyword #mining
- Maximal Association Rules: A New Tool for Mining for Keyword Co-Occurrences in Document Collections (RF, YA, AA, AZ, WK), pp. 167–170.
- KDD-1997-FeldmanKZ #data mining #documentation #mining #visualisation
- Visualization Techniques to Explore Data Mining Results for Document Collections (RF, WK, AZ), pp. 16–23.
- KDD-1996-FeldmanH #mining
- Mining Associations in Text in the Presence of Background Knowledge (RF, HH), pp. 343–346.
- KDD-1995-FeldmanD #database #information management
- Knowledge Discovery in Textual Databases (KDT) (RF, ID), pp. 112–117.
- ICML-1994-KoppelSF
- Getting the Most from Flawed Theories (MK, AMS, RF), pp. 139–147.
- ML-1991-FeldmanSK #approximate #incremental #refinement
- Incremental Refinement of Approximate Domain Theories (RF, AMS, MK), pp. 500–504.