Bamshad Mobasher, Robin D. Burke, Dietmar Jannach, Gediminas Adomavicius
Proceedings of the Fifth Conference on Recommender Systems
RecSys, 2011.
@proceedings{RecSys-2011, address = "Chicago, Illinois, USA", editor = "Bamshad Mobasher and Robin D. Burke and Dietmar Jannach and Gediminas Adomavicius", isbn = "978-1-4503-0683-6", publisher = "{ACM}", title = "{Proceedings of the Fifth Conference on Recommender Systems}", year = 2011, }
Contents (67 items)
- RecSys-2011-Sundaresan #recommendation
- Recommender systems at the long tail (NS), pp. 1–6.
- RecSys-2011-CelmaL #music #recommendation #revisited
- Music recommendation and discovery revisited (ÒC, PL), pp. 7–8.
- RecSys-2011-Hurley #recommendation #robust
- Robustness of recommender systems (NJH), pp. 9–10.
- RecSys-2011-Tunkelang #recommendation
- Recommendations as a conversation with the user (DT), pp. 11–12.
- RecSys-2011-ZhangAC #flexibility #matrix
- Generalizing matrix factorization through flexible regression priors (LZ, DA, BCC), pp. 13–20.
- RecSys-2011-BarbieriCMO #approach #modelling #recommendation
- Modeling item selection and relevance for accurate recommendations: a bayesian approach (NB, GC, GM, RO), pp. 21–28.
- RecSys-2011-ZhaoFLL #collaboration
- Shared collaborative filtering (YZ, XF, JL, BL), pp. 29–36.
- RecSys-2011-LiuMLY #elicitation #rating #recommendation
- Wisdom of the better few: cold start recommendation via representative based rating elicitation (NNL, XM, CL, QY), pp. 37–44.
- RecSys-2011-KimE #personalisation #rank #recommendation
- Personalized PageRank vectors for tag recommendations: inside FolkRank (HNK, AES), pp. 45–52.
- RecSys-2011-JamaliHE #network #probability #rating #recommendation #social
- A generalized stochastic block model for recommendation in social rating networks (MJ, TH, ME), pp. 53–60.
- RecSys-2011-SymeonidisTM #multi #network #predict #rating #recommendation #social
- Product recommendation and rating prediction based on multi-modal social networks (PS, ET, YM), pp. 61–68.
- RecSys-2011-IsaacmanICM #distributed #predict #rating
- Distributed rating prediction in user generated content streams (SI, SI, AC, MM), pp. 69–76.
- RecSys-2011-LiuMX #multi #recommendation
- Multi-criteria service recommendation based on user criteria preferences (LL, NM, DLX), pp. 77–84.
- RecSys-2011-GorgoglionePT #behaviour #recommendation #trust
- The effect of context-aware recommendations on customer purchasing behavior and trust (MG, UP, AT), pp. 85–92.
- RecSys-2011-LeeSKLL #graph #multi #random #ranking #recommendation
- Random walk based entity ranking on graph for multidimensional recommendation (SL, SiS, MK, DL, SgL), pp. 93–100.
- RecSys-2011-SekoYMM #behaviour #recommendation #representation #using
- Group recommendation using feature space representing behavioral tendency and power balance among members (SS, TY, MM, SyM), pp. 101–108.
- RecSys-2011-VargasC #metric #rank #recommendation
- Rank and relevance in novelty and diversity metrics for recommender systems (SV, PC), pp. 109–116.
- RecSys-2011-KorenS #named #personalisation #predict #rating
- OrdRec: an ordinal model for predicting personalized item rating distributions (YK, JS), pp. 117–124.
- RecSys-2011-Steck #recommendation
- Item popularity and recommendation accuracy (HS), pp. 125–132.
- RecSys-2011-EkstrandLKR #ecosystem #recommendation #research
- Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit (MDE, ML, JAK, JR), pp. 133–140.
- RecSys-2011-KnijnenburgRW #how #interactive #recommendation
- Each to his own: how different users call for different interaction methods in recommender systems (BPK, NJMR, MCW), pp. 141–148.
- RecSys-2011-SparlingS #how #named #question #rating
- Rating: how difficult is it? (EIS, SS), pp. 149–156.
- RecSys-2011-PuCH #evaluation #framework #recommendation
- A user-centric evaluation framework for recommender systems (PP, LC, RH), pp. 157–164.
- RecSys-2011-KoenigsteinDK #exclamation #modelling #music #recommendation #taxonomy
- Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy (NK, GD, YK), pp. 165–172.
- RecSys-2011-TayebiJEGF #named #recommendation
- CrimeWalker: a recommendation model for suspect investigation (MAT, MJ, ME, UG, RF), pp. 173–180.
- RecSys-2011-GuyRR #personalisation #process
- Personalized activity streams: sifting through the “river of news” (IG, IR, AR), pp. 181–188.
- RecSys-2011-Makrehchi #learning #recommendation #social #topic
- Social link recommendation by learning hidden topics (MM), pp. 189–196.
- RecSys-2011-HuP #collaboration
- Enhancing collaborative filtering systems with personality information (RH, PP), pp. 197–204.
- RecSys-2011-AnandG #approach #problem
- A market-based approach to address the new item problem (SSA, NG), pp. 205–212.
- RecSys-2011-LeeL #analysis #behaviour #music #recommendation
- My head is your tail: applying link analysis on long-tailed music listening behavior for music recommendation (KL, KL), pp. 213–220.
- RecSys-2011-XinS #matrix #multi #probability #recommendation
- Multi-value probabilistic matrix factorization for IP-TV recommendations (YX, HS), pp. 221–228.
- RecSys-2011-JojicSB #probability #similarity
- A probabilistic definition of item similarity (OJ, MS, NB), pp. 229–236.
- RecSys-2011-PraweshP #recommendation
- The “top N” news recommender: count distortion and manipulation resistance (SP, BP), pp. 237–244.
- RecSys-2011-YuanCZ #recommendation #social
- Factorization vs. regularization: fusing heterogeneous social relationships in top-n recommendation (QY, LC, SZ), pp. 245–252.
- RecSys-2011-BraunhoferKR #mobile #music #recommendation
- Recommending music for places of interest in a mobile travel guide (MB, MK, FR), pp. 253–256.
- RecSys-2011-YuPL #adaptation #recommendation #social
- Adaptive social similarities for recommender systems (LY, RP, ZL), pp. 257–260.
- RecSys-2011-ForbesZ #matrix #recommendation
- Content-boosted matrix factorization for recommender systems: experiments with recipe recommendation (PF, MZ), pp. 261–264.
- RecSys-2011-GuzziRB #interactive #multi #recommendation
- Interactive multi-party critiquing for group recommendation (FG, FR, RDB), pp. 265–268.
- RecSys-2011-WoerndlHBG #mobile #recommendation
- A model for proactivity in mobile, context-aware recommender systems (WW, JH, RB, DGV), pp. 273–276.
- RecSys-2011-DalyG #effectiveness #recommendation #social #using
- Effective event discovery: using location and social information for scoping event recommendations (EMD, WG), pp. 277–280.
- RecSys-2011-GeXTL #collaboration
- Collaborative filtering with collective training (YG, HX, AT, QL), pp. 281–284.
- RecSys-2011-KatzOSRS #collaboration #using #wiki
- Using Wikipedia to boost collaborative filtering techniques (GK, NO, BS, LR, GS), pp. 285–288.
- RecSys-2011-WuCMW #detection #learning #named
- Semi-SAD: applying semi-supervised learning to shilling attack detection (ZW, JC, BM, YW), pp. 289–292.
- RecSys-2011-LopsGSNM #network #social
- Leveraging the linkedin social network data for extracting content-based user profiles (PL, MdG, GS, FN, CM), pp. 293–296.
- RecSys-2011-TakacsPT #collaboration #feedback
- Applications of the conjugate gradient method for implicit feedback collaborative filtering (GT, IP, DT), pp. 297–300.
- RecSys-2011-BaltrunasLR #matrix #recommendation
- Matrix factorization techniques for context aware recommendation (LB, BL, FR), pp. 301–304.
- RecSys-2011-GantnerRFS #library #named #recommendation
- MyMediaLite: a free recommender system library (ZG, SR, CF, LST), pp. 305–308.
- RecSys-2011-CamposDS #evaluation #matrix #predict #recommendation #testing #towards
- Towards a more realistic evaluation: testing the ability to predict future tastes of matrix factorization-based recommenders (PGC, FD, MASM), pp. 309–312.
- RecSys-2011-Karatzoglou #collaboration #modelling #order
- Collaborative temporal order modeling (AK), pp. 313–316.
- RecSys-2011-LiZL #integration #named #personalisation #recommendation
- LOGO: a long-short user interest integration in personalized news recommendation (LL, LZ, TL), pp. 317–320.
- RecSys-2011-KnijnenburgWK #evaluation #recommendation
- A pragmatic procedure to support the user-centric evaluation of recommender systems (BPK, MCW, AK), pp. 321–324.
- RecSys-2011-PaparrizosCG #recommendation
- Machine learned job recommendation (IKP, BBC, AG), pp. 325–328.
- RecSys-2011-WangSS #e-commerce #recommendation
- Utilizing related products for post-purchase recommendation in e-commerce (JW, BS, NS), pp. 329–332.
- RecSys-2011-BelloginCC #algorithm #comparison #evaluation #recommendation
- Precision-oriented evaluation of recommender systems: an algorithmic comparison (AB, PC, IC), pp. 333–336.
- RecSys-2011-BourkeMS #people #recommendation #social
- Power to the people: exploring neighbourhood formations in social recommender system (SB, KM, BS), pp. 337–340.
- RecSys-2011-PizzatoS #collaboration #people #probability #recommendation
- Stochastic matching and collaborative filtering to recommend people to people (LASP, CS), pp. 341–344.
- RecSys-2011-WuRR #monitoring #recommendation #social #social media
- Recommendations in social media for brand monitoring (SW, WR, LR), pp. 345–348.
- RecSys-2011-EkstrandLKR11a #composition #framework #named #recommendation
- LensKit: a modular recommender framework (MDE, ML, JK, JR), pp. 349–350.
- RecSys-2011-SabinC #named #online #recommendation
- myMicSound: an online sound-based microphone recommendation system (ATS, CLC), pp. 351–352.
- RecSys-2011-DayanKBRSASF #benchmark #framework #metric #recommendation
- Recommenders benchmark framework (AD, GK, NB, LR, BS, AA, RS, RF), pp. 353–354.
- RecSys-2011-Faridani #analysis #canonical #correlation #recommendation #sentiment #using
- Using canonical correlation analysis for generalized sentiment analysis, product recommendation and search (SF), pp. 355–358.
- RecSys-2011-Tschersich #design #guidelines #mobile #recommendation
- Design guidelines for mobile group recommender systems to handle inaccurate or missing location data (MT), pp. 359–362.
- RecSys-2011-Chen #design #interactive #interface #recommendation #social
- Interface and interaction design for group and social recommender systems (YC), pp. 363–366.
- RecSys-2011-Alam #clustering #recommendation #web
- Intelligent web usage clustering based recommender system (SA), pp. 367–370.
- RecSys-2011-Bellogin #performance #predict #recommendation
- Predicting performance in recommender systems (AB), pp. 371–374.
- RecSys-2011-Zhang #recommendation
- Anchoring effects of recommender systems (JZ), pp. 375–378.
- RecSys-2011-SaidBLH #challenge #recommendation
- Challenge on context-aware movie recommendation: CAMRa2011 (AS, SB, EWDL, JH), pp. 385–386.
52 ×#recommendation
10 ×#social
8 ×#named
7 ×#collaboration
6 ×#rating
5 ×#matrix
5 ×#multi
5 ×#predict
4 ×#evaluation
4 ×#music
10 ×#social
8 ×#named
7 ×#collaboration
6 ×#rating
5 ×#matrix
5 ×#multi
5 ×#predict
4 ×#evaluation
4 ×#music