BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
rating
Google rating

Tag #rating

73 papers:

FDGFDG-2019-SarkarC #array #using
Using rating arrays to estimate score distributions for player-versus-level matchmaking (AS, SC), p. 8.
CIKMCIKM-2019-QiuSR #crowdsourcing #platform
Rating Mechanisms for Sustainability of Crowdsourcing Platforms (CQ, ACS, SMR), pp. 2003–2012.
CIKMCIKM-2019-WuWLH019a #named #overview #predict
ARP: Aspect-aware Neural Review Rating Prediction (CW, FW, JL, YH, XX0), pp. 2169–2172.
CIKMCIKM-2019-YuanWLWHX #memory management #overview #predict
Neural Review Rating Prediction with User and Product Memory (ZY, FW, JL, CW, YH, XX0), pp. 2341–2344.
ECIRECIR-p2-2019-NikolenkoTMSA #named #predict
AspeRa: Aspect-Based Rating Prediction Model (SIN, ET, VM, IS, AA), pp. 163–171.
CHI-PLAYCHI-PLAY-2018-WilsonM #artificial reality #case study #experience #game studies #interactive #video
Violent Video Games in Virtual Reality: Re-Evaluating the Impact and Rating of Interactive Experiences (GAW, MM), pp. 535–548.
FDGFDG-2018-SarkarC
Meet your match rating: providing skill information and choice in player-versus-level matchmaking (AS, SC), p. 8.
CIKMCIKM-2018-ChenLZY #predict
Heterogeneous Neural Attentive Factorization Machine for Rating Prediction (LC0, YL, ZZ, PSY), pp. 833–842.
FDGFDG-2017-SarkarWDC #game studies
Engagement effects of player rating system-based matchmaking for level ordering in human computation games (AS, MW, SD, SC), p. 10.
ECIRECIR-2017-ManotumruksaMO #matrix #network #predict #social #word
Matrix Factorisation with Word Embeddings for Rating Prediction on Location-Based Social Networks (JM, CM, IO), pp. 647–654.
KDDKDD-2017-Xu0TTL #distance #higher-order #named #optimisation #recommendation
HoORaYs: High-order Optimization of Rating Distance for Recommender Systems (JX0, YY0, HT, XT, JL0), pp. 525–534.
DiGRADiGRA-FDG-2016-CooperDT #game studies #testing
Player Rating Systems for Balancing Human Computation Games: Testing the Effect of Bipartiteness (SC, SD, TT).
CIKMCIKM-2015-HuLGKJ #automation #framework #maturity #mobile
Protecting Your Children from Inappropriate Content in Mobile Apps: An Automatic Maturity Rating Framework (BH0, BL0, NZG, DK, HJ), pp. 1111–1120.
CIKMCIKM-2015-LiangB #personalisation #probability #recommendation
A Probabilistic Rating Auto-encoder for Personalized Recommender Systems (HL, TB), pp. 1863–1866.
ECIRECIR-2015-PasinatoMZ #elicitation #learning
Active Learning Applied to Rating Elicitation for Incentive Purposes (MBP, CEM, GZ), pp. 291–302.
RecSysRecSys-2015-LiWTM #community #predict #recommendation #social
Overlapping Community Regularization for Rating Prediction in Social Recommender Systems (HL, DW, WT, NM), pp. 27–34.
HTHT-2014-Abdel-HafezXJ #generative
A rating aggregation method for generating product reputations (AAH, YX, AJ), pp. 291–293.
VLDBVLDB-2014-ParameswaranBG0PW #algorithm
Optimal Crowd-Powered Rating and Filtering Algorithms (AGP, SB, HGM, AG, NP, JW), pp. 685–696.
ICPRICPR-2014-AfridiLM #automation
An Automated System for Plant-Level Disease Rating in Real Fields (MJA, XL, JMM), pp. 148–153.
KDDKDD-2014-GunnemannGF #detection #evolution #probability #robust
Detecting anomalies in dynamic rating data: a robust probabilistic model for rating evolution (SG, NG, CF), pp. 841–850.
SIGIRSIGIR-2014-HuSL #predict
Your neighbors affect your ratings: on geographical neighborhood influence to rating prediction (LH, AS, YL), pp. 345–354.
FDGFDG-2013-CaplarSM #analysis #case study #performance
Analysis of players' in-game performance vs rating: Case study of Heroes of Newerth (NC, MS, MM), pp. 237–244.
CoGVS-Games-2013-HendrixBLL #case study #education #experience #game studies
Sharing Experiences with Serious Games - the Edugamelab Rating Tool for Parents and Teachers (MH, PB, ML, HL), pp. 1–4.
RecSysRecSys-2013-Adamopoulos #predict #recommendation
Beyond rating prediction accuracy: on new perspectives in recommender systems (PA), pp. 459–462.
RecSysRecSys-2013-McAuleyL #comprehension #overview #topic
Hidden factors and hidden topics: understanding rating dimensions with review text (JJM, JL), pp. 165–172.
RecSysRecSys-2013-NguyenKWHEWR #experience #recommendation #user interface
Rating support interfaces to improve user experience and recommender accuracy (TTN, DK, TYW, PMH, MDE, MCW, JR), pp. 149–156.
RecSysRecSys-2013-TangGHL #overview #predict
Context-aware review helpfulness rating prediction (JT, HG, XH, HL), pp. 1–8.
SIGIRSIGIR-2013-BashirAWGPA #documentation
A document rating system for preference judgements (MB, JA, JW, PBG, VP, JAA), pp. 909–912.
CHICHI-2012-NobaranyORCMM #design #interface #metric #ranking
The design space of opinion measurement interfaces: exploring recall support for rating and ranking (SN, LO, VKR, CHC, JM, TM), pp. 2035–2044.
CIKMCIKM-2012-GargKL #network #social
Information propagation in social rating networks (PG, IK, MRL), pp. 2279–2282.
ICPRICPR-2012-KimP #classification #visual notation
Attribute rating for classification of visual objects (JK, VP), pp. 1611–1614.
RecSysRecSys-2012-KluverNESR #how #question
How many bits per rating? (DK, TTN, MDE, SS, JR), pp. 99–106.
SACSAC-2012-GriffithOS #collaboration #predict
Investigations into user rating information and predictive accuracy in a collaborative filtering domain (JG, CO, HS), pp. 937–942.
HTHT-2011-SeroussiBZ #modelling #personalisation #predict #using
Personalised rating prediction for new users using latent factor models (YS, FB, IZ), pp. 47–56.
CHICHI-2011-LelisH #how #online #people
Informing decisions: how people use online rating information to make choices (SL, AH), pp. 2285–2294.
CIKMCIKM-2011-HarveyCRC #collaboration #modelling #predict
Bayesian latent variable models for collaborative item rating prediction (MH, MJC, IR, FC), pp. 699–708.
ECIRECIR-2011-Carrillo-de-AlbornozPGD #analysis #mining #overview #sentiment
A Joint Model of Feature Mining and Sentiment Analysis for Product Review Rating (JCdA, LP, PG, AD), pp. 55–66.
ICMLICML-2011-NikolenkoS #contest
A New Bayesian Rating System for Team Competitions (SIN, AS), pp. 601–608.
KDDKDD-2011-ChenGTY
User reputation in a comment rating environment (BCC, JG, BLT, JY), pp. 159–167.
KDDKDD-2011-WangLZ #analysis #keyword
Latent aspect rating analysis without aspect keyword supervision (HW, YL, CZ), pp. 618–626.
RecSysRecSys-2011-IsaacmanICM #distributed #predict
Distributed rating prediction in user generated content streams (SI, SI, AC, MM), pp. 69–76.
RecSysRecSys-2011-JamaliHE #network #probability #recommendation #social
A generalized stochastic block model for recommendation in social rating networks (MJ, TH, ME), pp. 53–60.
RecSysRecSys-2011-KorenS #named #personalisation #predict
OrdRec: an ordinal model for predicting personalized item rating distributions (YK, JS), pp. 117–124.
RecSysRecSys-2011-LiuMLY #elicitation #recommendation
Wisdom of the better few: cold start recommendation via representative based rating elicitation (NNL, XM, CL, QY), pp. 37–44.
RecSysRecSys-2011-SparlingS #how #named #question
Rating: how difficult is it? (EIS, SS), pp. 149–156.
RecSysRecSys-2011-SymeonidisTM #multi #network #predict #recommendation #social
Product recommendation and rating prediction based on multi-modal social networks (PS, ET, YM), pp. 61–68.
SIGIRSIGIR-2011-OchiOO #predict #using #word
Rating prediction using feature words extracted from customer reviews (MO, MO, RO), pp. 1205–1206.
EDMEDM-2010-AleahmadAK #automation
Automatic Rating of User-Generated Math Solutions (TA, VA, RK), pp. 267–268.
CIKMCIKM-2010-LimNJLL #behaviour #detection #overview #using
Detecting product review spammers using rating behaviors (EPL, VAN, NJ, BL, HWL), pp. 939–948.
KDDKDD-2010-ChuaL #generative #modelling #network #online #trust #using
Trust network inference for online rating data using generative models (FCTC, EPL), pp. 889–898.
KDDKDD-2010-WangLZ #analysis #approach #overview
Latent aspect rating analysis on review text data: a rating regression approach (HW, YL, CZ), pp. 783–792.
RecSysRecSys-2010-DesarkarSM #collaboration #graph #predict
Aggregating preference graphs for collaborative rating prediction (MSD, SS, PM), pp. 21–28.
RecSysRecSys-2010-GedikliJ #recommendation
Recommending based on rating frequencies (FG, DJ), pp. 233–236.
RecSysRecSys-2010-MelloAZ #impact analysis #learning
Active learning driven by rating impact analysis (CERdM, MAA, GZ), pp. 341–344.
HCIOCSC-2009-HaefligerRJK #behaviour #community
Modding as Rating Behavior in Virtual Communities: The Case of Rooster Teeth Productions (SH, PR, PMJ, GvK), pp. 197–206.
ECIRECIR-2009-BaccianellaES #multi
Multi-facet Rating of Product Reviews (SB, AE, FS), pp. 461–472.
ECIRECIR-2009-MoshfeghiAPJ #collaboration #predict #recommendation #semantics
Movie Recommender: Semantically Enriched Unified Relevance Model for Rating Prediction in Collaborative Filtering (YM, DA, BP, JMJ), pp. 54–65.
RecSysRecSys-2009-GarcinFJJ #collaboration
Rating aggregation in collaborative filtering systems (FG, BF, RJ, NJ), pp. 349–352.
RecSysRecSys-2009-UmyarovT #estimation #modelling #recommendation #using
Improving rating estimation in recommender systems using aggregation- and variance-based hierarchical models (AU, AT), pp. 37–44.
CHICHI-2008-GillGFO
Emotion rating from short blog texts (AJG, DG, RMF, JO), pp. 1121–1124.
CIKMCIKM-2008-WijayaB #random #rank
A random walk on the red carpet: rating movies with user reviews and pagerank (DTW, SB), pp. 951–960.
RecSysRecSys-2008-Kwon #recommendation #using
Improving top-n recommendation techniques using rating variance (YK), pp. 307–310.
HCIHCI-IPT-2007-BartneckAK #interface
Hit Me Baby One More Time: A Haptic Rating Interface (CB, PA, TK), pp. 743–747.
SIGIRSIGIR-2006-NaguraSKA #documentation #web
A method of rating the credibility of news documents on the web (RN, YS, NK, MA), pp. 683–684.
SACSAC-2006-MussigmannA #network
Supplier network management: evaluating and rating of strategic supply networks (NM, AA), pp. 1511–1515.
TPDLECDL-2005-KimMAVF #effectiveness #information management
Effectiveness of Implicit Rating Data on Characterizing Users in Complex Information Systems (SK, UM, KA, SV, EAF), pp. 186–194.
SACSAC-2004-Rigaux
An iterative rating method: application to web-based conference management (PR), pp. 1682–1687.
ECIRECIR-2003-TianC #collaboration #learning #recommendation #similarity
Learning User Similarity and Rating Style for Collaborative Recommendation (LFT, KWC), pp. 135–145.
JCDLJCDL-2001-RiggsW #algorithm #automation
An algorithm for automated rating of reviewers (TR, RW), pp. 381–387.
TPDLECDL-2000-ChandrinosAPS #automation #web
Automatic Web Rating: Filtering Obscene Content on the Web (KC, IA, GP, CDS), pp. 403–406.
ICSEICSE-1998-ArnoldP #development #metric #scalability
Software Size Measurement and Productivity Rating in a Large-Scale Software Development Department (MA, PP), pp. 490–493.
ITiCSEITiCSE-WGR-1997-Preston #consistency #evaluation #performance #reliability
Evaluation software: improving consistency and reliability of performance rating (JAP), pp. 132–134.
SACSAC-1994-RitschelPG #classification #multi
Rating of pattern classifications in multi-layer perceptrons: theoretical background and practical results (WR, TP, RG), pp. 142–144.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.