Proceedings of the 13th Conference on Computational Intelligence and Games
CIG-2017, 2017.
Contents (46 items)
- CIG-2017-AlvernazT #game studies #visual notation
- Autoencoder-augmented neuroevolution for visual doom playing (SA, JT), pp. 1–8.
- CIG-2017-ApeldoornV #game studies #knowledge base #using
- Measuring strategic depth in games using hierarchical knowledge bases (DA, VV), pp. 9–16.
- CIG-2017-AshlockPS #game studies #theorem #video
- General video game playing escapes the no free lunch theorem (DA, DPL, AS), pp. 17–24.
- CIG-2017-BaldwinDFH #design pattern #game studies #generative #using
- Mixed-initiative procedural generation of dungeons using game design patterns (AB0, SD, JMF, JH), pp. 25–32.
- CIG-2017-BertensGP #big data #game studies #multi #predict #scalability
- Games and big data: A scalable multi-dimensional churn prediction model (PB, AG, AP), pp. 33–36.
- CIG-2017-BrownA #game studies #multi #using
- Using multiple worlds for multiple agent roles in games (JAB, DA), pp. 37–44.
- CIG-2017-BurnsT #detection #game studies #using
- Detecting flow in games using facial expressions (AB, JRT), pp. 45–52.
- CIG-2017-DemediukTRZLM #algorithm #monte carlo
- Monte Carlo tree search based algorithms for dynamic difficulty adjustment (SD, MT, WLR, FZ, XL0, F'M), pp. 53–59.
- CIG-2017-DockhornK
- Combining cooperative and adversarial coevolution in the context of pac-man (AD, RK), pp. 60–67.
- CIG-2017-EgerMC
- An intentional AI for hanabi (ME, CM, MAC), pp. 68–75.
- CIG-2017-FontMLR #approach #game studies #heuristic #hybrid #towards
- Towards a hybrid neural and evolutionary heuristic approach for playing tile-matching puzzle games (JMF, DM, SL, PRC), pp. 76–79.
- CIG-2017-FrancilletteGA #adaptation #game studies #mobile
- Adaptive gameplay for mobile gaming (YF, AG, LA), pp. 80–87.
- CIG-2017-GainaLL #evolution #game studies #video
- Rolling horizon evolution enhancements in general video game playing (RDG, SML, DPL), pp. 88–95.
- CIG-2017-GoudelisTKK #3d #classification #effectiveness #feature model
- 3D cylindrical trace transform based feature extraction for effective human action classification (GG, GT, KK, SDK), pp. 96–103.
- CIG-2017-Greenwood #approach #fuzzy #game studies
- A fuzzy system approach for choosing public goods game strategies (GWG), pp. 104–109.
- CIG-2017-GrossiR #behaviour #communication #multi
- Evolved communication strategies and emergent behaviour of multi-agents in pursuit domains (GG, BR), pp. 110–117.
- CIG-2017-Guerrero-Romero #game studies #heuristic
- Beyond playing to win: Diversifying heuristics for GVGAI (CGR, AL, DPL), pp. 118–125.
- CIG-2017-GuimaraesSJ #architecture #game studies #named #social
- CiF-CK: An architecture for social NPCS in commercial games (MG, PS0, AJ), pp. 126–133.
- CIG-2017-HorsleyL #automation #generative #network
- Building an automatic sprite generator with deep convolutional generative adversarial networks (LH, DPL), pp. 134–141.
- CIG-2017-IsaksenWFN #game studies #simulation
- Simulating strategy and dexterity for puzzle games (AI, DW, AF, AN), pp. 142–149.
- CIG-2017-JeonYYK #game studies #mobile #performance #predict
- Extracting gamers' cognitive psychological features and improving performance of churn prediction from mobile games (JJ, DY, SIY, KJK), pp. 150–153.
- CIG-2017-JiangHT #generative #using
- Procedural generation of angry birds fun levels using pattern-struct and preset-model (YJ0, TH, RT), pp. 154–161.
- CIG-2017-JustesenR #learning #using
- Learning macromanagement in starcraft from replays using deep learning (NJ, SR), pp. 162–169.
- CIG-2017-KhalifaGLT #game studies #generative #video
- General video game rule generation (AK, MCG, DPL, JT), pp. 170–177.
- CIG-2017-KimK #game studies #modelling
- Opponent modeling based on action table for MCTS-based fighting game AI (MJK, KJK), pp. 178–180.
- CIG-2017-KostkaKKR
- Text-based adventures of the golovin AI agent (BK, JK, JK, PR), pp. 181–188.
- CIG-2017-LeeY #game studies #mobile #optimisation
- Optimizing game live service for mobile free-to-play games (SKL, SIY), pp. 189–190.
- CIG-2017-LeeT #contest
- Showdown AI competition (SL, JT), pp. 191–198.
- CIG-2017-LoiaconoA #behaviour #evolution
- Fight or flight: Evolving maps for cube 2 to foster a fleeing behavior (DL, LA), pp. 199–206.
- CIG-2017-PhucNK #behaviour #learning #statistics #using
- Learning human-like behaviors using neuroevolution with statistical penalties (LHP, KN, KI), pp. 207–214.
- CIG-2017-SilvaVT #game studies #monte carlo #using
- Using Monte Carlo tree search and google maps to improve game balancing in location-based games (LFMS, WV, FT), pp. 215–222.
- CIG-2017-MinK #game studies #learning #using #visual notation
- Learning to play visual doom using model-free episodic control (BJM, KJK), pp. 223–225.
- CIG-2017-NguyenRGM #automation #learning #network
- Automated learning of hierarchical task networks for controlling minecraft agents (CN, NR, SG, HMA), pp. 226–231.
- CIG-2017-OonishiI #game studies #learning #using
- Improving generalization ability in a puzzle game using reinforcement learning (HO, HI), pp. 232–239.
- CIG-2017-OsbornSM #automation #design #game studies #learning
- Automated game design learning (JCO, AS, MM), pp. 240–247.
- CIG-2017-LiebanaSGRL #game studies #physics #video
- Introducing real world physics and macro-actions to general video game ai (DPL, MS, RDG, JR, SML), pp. 248–255.
- CIG-2017-PoulsenTFR #learning #named #visual notation
- DLNE: A hybridization of deep learning and neuroevolution for visual control (APP, MT, MHF, SR), pp. 256–263.
- CIG-2017-RooijackersW #algorithm #game studies
- Resource-gathering algorithms in the game of starcraft (MLMR, MHMW), pp. 264–271.
- CIG-2017-SantosSM #monte carlo
- Monte Carlo tree search experiments in hearthstone (AS, PAS, FSM), pp. 272–279.
- CIG-2017-SnodgrassO #generative #multi #using
- Procedural level generation using multi-layer level representations with MdMCs (SS, SO), pp. 280–287.
- CIG-2017-StephensonR #game studies #generative #physics
- Generating varied, stable and solvable levels for angry birds style physics games (MS, JR), pp. 288–295.
- CIG-2017-UriarteO #game studies #generative #realtime
- Single believe state generation for partially observable real-time strategy games (AU, SO), pp. 296–303.
- CIG-2017-AckerLB #automaton #network #simulation
- Cellular automata simulation on FPGA for training neural networks with virtual world imagery (OVA, OL, GB), pp. 304–305.
- CIG-2017-YoonK #game studies #network #visual notation
- Deep Q networks for visual fighting game AI (SY, KJK), pp. 306–308.
- CIG-2017-ZhangB #learning #policy
- Improving hearthstone AI by learning high-level rollout policies and bucketing chance node events (SZ, MB), pp. 309–316.
- CIG-2017-IlhanE #game studies #learning #monte carlo #video
- Monte Carlo tree search with temporal-difference learning for general video game playing (EI, ASEU), pp. 317–324.