BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Australia
1 × Canada
1 × Chile
1 × France
1 × Italy
1 × Portugal
1 × Russia
1 × Singapore
1 × Spain
2 × Ireland
2 × The Netherlands
3 × China
3 × United Kingdom
7 × USA
Collaborated with:
I.Ounis R.L.T.Santos R.McCreadie N.Limsopatham B.He N.Tonellotto J.Peng M.Albakour E.Kharitonov P.Serdyukov I.Soboroff M.Catena B.T.Dinçer D.Hannah R.W.White D.McDougall R.Deveaud A.Freire F.Cacheda V.Plachouras G.D.Santo G.McDonald T.Gollins J.He A.Fang P.Habel A.Vorobev J.Manotumruksa C.L.A.Clarke V.Bicer J.Giles F.Jabr J.Lin D.McCullough G.Amati D.Johnson D.Broccolo S.Orlando R.Perego F.Silvestri
Talks about:
search (27) rank (11) use (11) queri (9) retriev (8) expert (8) learn (8) sensit (7) opinion (6) select (6)

Person: Craig Macdonald

DBLP DBLP: Macdonald:Craig

Facilitated 2 volumes:

CIKM 2011Ed
ECIR 2008Ed

Contributed to:

SIGIR 20152015
CIKM 20142014
ECIR 20142014
SIGIR 20142014
CIKM 20132013
ECIR 20132013
SIGIR 20132013
CIKM 20122012
SIGIR 20122012
CIKM 20112011
ECIR 20112011
SIGIR 20112011
CIKM 20102010
ECIR 20102010
CIKM 20092009
ECIR 20092009
SIGIR 20092009
CIKM 20082008
ECIR 20082008
SIGIR 20082008
CIKM 20072007
ECIR 20072007
SIGIR 20072007
CIKM 20062006
SIGIR 20062006
ECIR 20052005

Wrote 66 papers:

SIGIR-2015-AlbakourMO #data type #identification #metadata #topic #using
Using Sensor Metadata Streams to Identify Topics of Local Events in the City (MDA, CM, IO), pp. 711–714.
SIGIR-2015-CatenaMT #cpu #power management #web
Load-sensitive CPU Power Management for Web Search Engines (MC, CM, NT), pp. 751–754.
SIGIR-2015-FangOHML #classification #topic #twitter
Topic-centric Classification of Twitter User’s Political Orientation (AF, IO, PH, CM, NL), pp. 791–794.
SIGIR-2015-KharitonovMSO #online #scheduling
Optimised Scheduling of Online Experiments (EK, CM, PS, IO), pp. 453–462.
SIGIR-2015-KharitonovVMSO #online #testing
Sequential Testing for Early Stopping of Online Experiments (EK, AV, CM, PS, IO), pp. 473–482.
SIGIR-2015-SantoMMO #query
Comparing Approaches for Query Autocompletion (GDS, RM, CM, IO), pp. 775–778.
CIKM-2014-DeveaudAMMO #named #personalisation #recommendation
SmartVenues: Recommending Popular and Personalised Venues in a City (RD, MDA, JM, CM, IO), pp. 2078–2080.
CIKM-2014-DeveaudAMO #learning #on the #rank
On the Importance of Venue-Dependent Features for Learning to Rank Contextual Suggestions (RD, MDA, CM, IO), pp. 1827–1830.
CIKM-2014-LimsopathamMO #modelling #multi #ranking #towards
Modelling Relevance towards Multiple Inclusion Criteria when Ranking Patients (NL, CM, IO), pp. 1639–1648.
CIKM-2014-McCreadieMO #adaptation #incremental #summary
Incremental Update Summarization: Adaptive Sentence Selection based on Prevalence and Novelty (RM, CM, IO), pp. 301–310.
ECIR-2014-AlbakourMOCB #information management
Information Access in Smart Cities (i-ASC) (MDA, CM, IO, CLAC, VB), pp. 810–814.
ECIR-2014-CatenaMO #on the #performance
On Inverted Index Compression for Search Engine Efficiency (MC, CM, IO), pp. 359–371.
ECIR-2014-DincerOM #evaluation #retrieval
Tackling Biased Baselines in the Risk-Sensitive Evaluation of Retrieval Systems (BTD, IO, CM), pp. 26–38.
ECIR-2014-McDonaldMOG #classification #overview #perspective #towards
Towards a Classifier for Digital Sensitivity Review (GM, CM, IO, TG), pp. 500–506.
SIGIR-2014-DincerMO #evaluation #retrieval #testing
Hypothesis testing for the risk-sensitive evaluation of retrieval systems (BTD, CM, IO), pp. 23–32.
CIKM-2013-AlbakourMO #effectiveness #microblog #on the #realtime
On sparsity and drift for effective real-time filtering in microblogs (MDA, CM, IO), pp. 419–428.
CIKM-2013-BroccoloMOOPST #distributed
Load-sensitive selective pruning for distributed search (DB, CM, SO, IO, RP, FS, NT), pp. 379–388.
CIKM-2013-KharitonovMSO #using
Using historical click data to increase interleaving sensitivity (EK, CM, PS, IO), pp. 679–688.
ECIR-2013-FreireMTOC #hybrid #query #scheduling
Hybrid Query Scheduling for a Replicated Search Engine (AF, CM, NT, IO, FC), pp. 435–446.
ECIR-2013-LimsopathamMO
Aggregating Evidence from Hospital Departments to Improve Medical Records Search (NL, CM, IO), pp. 279–291.
ECIR-2013-LimsopathamMO13a #documentation #query #representation
A Task-Specific Query and Document Representation for Medical Records Search (NL, CM, IO), pp. 747–751.
SIGIR-2013-KharitonovMSO #evaluation #metric #modelling #query
User model-based metrics for offline query suggestion evaluation (EK, CM, PS, IO), pp. 633–642.
SIGIR-2013-LimsopathamMO #learning
Learning to combine representations for medical records search (NL, CM, IO), pp. 833–836.
SIGIR-2013-McCreadieMO #what
News vertical search: when and what to display to users (RM, CM, IO), pp. 253–262.
CIKM-2012-MacdonaldSO #learning #on the #query #rank
On the usefulness of query features for learning to rank (CM, RLTS, IO), pp. 2559–2562.
CIKM-2012-McCreadieMOGJ #crowdsourcing #using #web
An examination of content farms in web search using crowdsourcing (RM, CM, IO, JG, FJ), pp. 2551–2554.
SIGIR-2012-FreireMTOC #query #scheduling
Scheduling queries across replicas (AF, CM, NT, IO, FC), pp. 1139–1140.
SIGIR-2012-LimsopathamMMO #dependence
Exploiting term dependence while handling negation in medical search (NL, CM, RM, IO), pp. 1065–1066.
SIGIR-2012-MacdonaldTO #learning #online #predict #query #scheduling
Learning to predict response times for online query scheduling (CM, NT, IO), pp. 621–630.
SIGIR-2012-MacdonaldTO12a #effectiveness #learning #rank #safety
Effect of dynamic pruning safety on learning to rank effectiveness (CM, NT, IO), pp. 1051–1052.
SIGIR-2012-McCreadieMO #automation #crowdsourcing #named
CrowdTerrier: automatic crowdsourced relevance assessments with terrier (RM, CM, IO), p. 1005.
SIGIR-2012-McCreadieSLMOM #corpus #on the #reuse #twitter
On building a reusable Twitter corpus (RM, IS, JL, CM, IO, DM), pp. 1113–1114.
CIKM-2011-SantosMO #effectiveness
Effectiveness beyond the first crawl tier (RLTS, CM, IO), pp. 1937–1940.
ECIR-2011-MacdonaldO #learning #modelling #ranking
Learning Models for Ranking Aggregates (CM, IO), pp. 517–529.
SIGIR-2011-LimsopathamSMO #using
Disambiguating biomedical acronyms using EMIM (NL, RLTS, CM, IO), pp. 1213–1214.
SIGIR-2011-SantosMO
Intent-aware search result diversification (RLTS, CM, IO), pp. 595–604.
SIGIR-2011-SantosMO11a #metric #on the #ranking
On the suitability of diversity metrics for learning-to-rank for diversity (RLTS, CM, IO), pp. 1185–1186.
SIGIR-2011-SantosMO11b #how #question #web
How diverse are web search results? (RLTS, CM, IO), pp. 1187–1188.
SIGIR-2011-TonellottoMO #order #retrieval
Effect of different docid orderings on dynamic pruning retrieval strategies (NT, CM, IO), pp. 1179–1180.
CIKM-2010-SantosMO #web
Selectively diversifying web search results (RLTS, CM, IO), pp. 1179–1188.
ECIR-2010-PengMO #learning #ranking
Learning to Select a Ranking Function (JP, CM, IO), pp. 114–126.
ECIR-2010-SantosPMO
Explicit Search Result Diversification through Sub-queries (RLTS, JP, CM, IO), pp. 87–99.
CIKM-2009-MacdonaldO #documentation #ranking
The influence of the document ranking in expert search (CM, IO), pp. 1983–1986.
CIKM-2009-PengMHO #case study #enterprise
A study of selective collection enrichment for enterprise search (JP, CM, BH, IO), pp. 1999–2002.
ECIR-2009-SantosHMO #proximity #retrieval
Integrating Proximity to Subjective Sentences for Blog Opinion Retrieval (RLTS, BH, CM, IO), pp. 325–336.
SIGIR-2009-MacdonaldO #documentation #on the #ranking
On perfect document rankings for expert search (CM, IO), pp. 740–741.
SIGIR-2009-MacdonaldOS #question
Is spam an issue for opinionated blog post search? (CM, IO, IS), pp. 710–711.
SIGIR-2009-MacdonaldW
Usefulness of click-through data in expert search (CM, RWW), pp. 816–817.
SIGIR-2009-McCreadieMO #on the #pipes and filters
On single-pass indexing with MapReduce (RM, CM, IO), pp. 742–743.
SIGIR-2009-McDougallM #using
Expertise search in academia using facets (DM, CM), p. 834.
CIKM-2008-HeMHO #approach #effectiveness #retrieval #statistics
An effective statistical approach to blog post opinion retrieval (BH, CM, JH, IO), pp. 1063–1072.
CIKM-2008-MacdonaldO #ranking
Key blog distillation: ranking aggregates (CM, IO), pp. 1043–1052.
ECIR-2008-HannahMO #analysis #graph
Analysis of Link Graph Compression Techniques (DH, CM, IO), pp. 596–601.
ECIR-2008-MacdonaldHO #quality
High Quality Expertise Evidence for Expert Search (CM, DH, IO), pp. 283–295.
ECIR-2008-MacdonaldO #documentation #evaluation
Expert Search Evaluation by Supporting Documents (CM, IO), pp. 555–563.
SIGIR-2008-HeMO #metric #retrieval #using
Retrieval sensitivity under training using different measures (BH, CM, IO), pp. 67–74.
SIGIR-2008-HeMO08a #ranking #using
Ranking opinionated blog posts using OpinionFinder (BH, CM, IO), pp. 727–728.
SIGIR-2008-MacdonaldHOS
Limits of opinion-finding baseline systems (CM, BH, IO, IS), pp. 747–748.
SIGIR-2008-PengMO #automation #documentation #feature model #retrieval #web
Automatic document prior feature selection for web retrieval (JP, CM, IO), pp. 761–762.
CIKM-2007-MacdonaldO #query
Expertise drift and query expansion in expert search (CM, IO), pp. 341–350.
ECIR-2007-MacdonaldO #feedback #using
Using Relevance Feedback in Expert Search (CM, IO), pp. 431–443.
SIGIR-2007-PengMHPO #dependence #framework
Incorporating term dependency in the dfr framework (JP, CM, BH, VP, IO), pp. 843–844.
CIKM-2006-MacdonaldO #adaptation #data fusion
Voting for candidates: adapting data fusion techniques for an expert search task (CM, IO), pp. 387–396.
SIGIR-2006-MacdonaldO #email
Combining fields in known-item email search (CM, IO), pp. 675–676.
SIGIR-2006-MacdonaldO06a #framework #platform #using
Searching for expertise using the terrier platform (CM, IO), p. 732.
ECIR-2005-OunisAPHMJ #framework #information retrieval #platform
Terrier Information Retrieval Platform (IO, GA, VP, BH, CM, DJ), pp. 517–519.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.