BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Australia
1 × The Netherlands
16 × USA
3 × Portugal
Collaborated with:
J.Neville T.Oates L.Friedland M.J.Rattigan M.E.Maier M.Hay W.B.Croft M.D.Schmill A.McGovern A.S.Fast H.G.Goldberg M.Lavine T.Strohman C.Shah B.N.Levine B.Gallagher H.Blau F.J.Provost J.Komoroske G.Miklau D.F.Towsley P.Weis C.Faloutsos Ö.Simsek K.Palmer V.Lavrenko D.Lawrie P.Ogilvie J.Allan R.Kumar A.Tuzhilin G.Kossinets J.Leskovec A.Tomkins B.J.Taylor T.E.Senator A.Memory W.T.Young B.Rees R.Pierce D.Huang M.Reardon D.A.Bader E.Chow I.A.Essa J.Jones V.Bettadapura D.H.Chau O.Green O.Kaya A.Zakrzewska E.Briscoe R.L.M.IV R.McColl L.Weiss T.G.Dietterich A.Fern W.Wong S.Das A.Emmott J.Irvine J.Y.Lee D.Koutra D.D.Corkill A.Gentzel
Talks about:
relat (7) network (6) discoveri (4) structur (4) knowledg (4) social (4) detect (4) improv (3) design (3) model (3)

Person: David Jensen

DBLP DBLP: Jensen:David

Contributed to:

ICML c3 20132013
KDD 20132013
KDIR 20092009
KEOD 20092009
KMIS 20092009
KDD 20082008
VLDB 20082008
ICML 20072007
KDD 20072007
SIGIR 20072007
CIKM 20062006
KDD 20062006
KDD 20052005
KDD 20042004
ICML 20032003
KDD 20032003
ICML 20022002
CIKM 20002000
KDD 19991999
KDD 19981998
ICML 19971997
KDD 19971997

Wrote 26 papers:

ICML-c3-2013-FriedlandJL #detection #social
Copy or Coincidence? A Model for Detecting Social Influence and Duplication Events (LF, DJ, ML), pp. 1175–1183.
KDD-2013-SenatorGMYRPHRBCEJBCGKZBMMWDFWDEILKFCFGJ #database #detection #process
Detecting insider threats in a real corporate database of computer usage activity (TES, HGG, AM, WTY, BR, RP, DH, MR, DAB, EC, IAE, JJ, VB, DHC, OG, OK, AZ, EB, RLMI, RM, LW, TGD, AF, WKW, SD, AE, JI, JYL, DK, CF, DDC, LF, AG, DJ), pp. 1393–1401.
KDIR-2009-Jensen #design #information management
Knowledge Discovery by Design (DJ), p. 9.
KEOD-2009-Jensen #design #information management
Knowledge Discovery by Design (DJ), p. 9.
KMIS-2009-Jensen #design #information management
Knowledge Discovery by Design (DJ), p. 9.
KDD-2008-KumarTFJKLT #network #social
Social networks: looking ahead (RK, AT, CF, DJ, GK, JL, AT), p. 1060.
VLDB-2008-HayMJTW #identification #network #social
Resisting structural re-identification in anonymized social networks (MH, GM, DJ, DFT, PW), pp. 102–114.
ICML-2007-RattiganMJ #clustering #graph #network
Graph clustering with network structure indices (MJR, MEM, DJ), pp. 783–790.
KDD-2007-FastFMTJGK #detection #preprocessor #relational
Relational data pre-processing techniques for improved securities fraud detection (ASF, LF, MEM, BJT, DJ, HGG, JK), pp. 941–949.
KDD-2007-FriedlandJ #identification
Finding tribes: identifying close-knit individuals from employment patterns (LF, DJ), pp. 290–299.
SIGIR-2007-StrohmanCJ #recommendation
Recommending citations for academic papers (TS, WBC, DJ), pp. 705–706.
CIKM-2006-ShahCJ #detection #documentation #representation
Representing documents with named entities for story link detection (SLD) (CS, WBC, DJ), pp. 868–869.
KDD-2006-RattiganMJ #approximate #network #performance #using
Using structure indices for efficient approximation of network properties (MJR, MEM, DJ), pp. 357–366.
KDD-2005-FastJL #network #peer-to-peer #social
Creating social networks to improve peer-to-peer networking (ASF, DJ, BNL), pp. 568–573.
KDD-2005-NevilleSJKPG #information management #relational #using
Using relational knowledge discovery to prevent securities fraud (JN, ÖS, DJ, JK, KP, HGG), pp. 449–458.
KDD-2004-JensenNG #classification #relational #why
Why collective inference improves relational classification (DJ, JN, BG), pp. 593–598.
ICML-2003-JensenNH #bias #relational
Avoiding Bias when Aggregating Relational Data with Degree Disparity (DJ, JN, MH), pp. 274–281.
ICML-2003-McGovernJ #identification #learning #multi #predict #relational #using
Identifying Predictive Structures in Relational Data Using Multiple Instance Learning (AM, DJ), pp. 528–535.
KDD-2003-JensenRB #assessment
Information awareness: a prospective technical assessment (DJ, MJR, HB), pp. 378–387.
KDD-2003-NevilleJFH #learning #probability #relational
Learning relational probability trees (JN, DJ, LF, MH), pp. 625–630.
ICML-2002-JensenN #bias #feature model #learning #relational
Linkage and Autocorrelation Cause Feature Selection Bias in Relational Learning (DJ, JN), pp. 259–266.
CIKM-2000-LavrenkoSLOJA #modelling #recommendation
Language Models for Financial News Recommendation (VL, MDS, DL, PO, DJ, JA), pp. 389–396.
KDD-1999-ProvostJO #performance
Efficient Progressive Sampling (FJP, DJ, TO), pp. 23–32.
KDD-1998-OatesJ #dataset #modelling #scalability
Large Datasets Lead to Overly Complex Models: An Explanation and a Solution (TO, DJ), pp. 294–298.
ICML-1997-OatesJ #complexity #set
The Effects of Training Set Size on Decision Tree Complexity (TO, DJ), pp. 254–262.
KDD-1997-JensenS #multi
Adjusting for Multiple Comparisons in Decision Tree Pruning (DJ, MDS), pp. 195–198.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.