Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Usama M. Fayyad, Surajit Chaudhuri, David Madigan
Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining
KDD, 1999.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{KDD-1999,
	acmid         = "312129",
	address       = "San Diego, California, USA",
	editor        = "Usama M. Fayyad and Surajit Chaudhuri and David Madigan",
	isbn          = "1-58113-143-7",
	publisher     = "{ACM}",
	title         = "{Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining}",
	year          = 1999,
}

Contents (64 items)

KDD-1999-Agrawal #data mining #mining
Data Mining: Crossing the Chasm (RA), p. 2.
KDD-1999-Hackathorn #web
Farming the Web for Systematic Business Intelligence (RDH), p. 3.
KDD-1999-Pregibon #named #statistics
2001: A Statistical Odyssey (DP), p. 4.
KDD-1999-DuMouchelVJCP
Squashing Flat Files Flatter (WD, CV, TJ, CC, DP), pp. 6–15.
KDD-1999-LarsenA #clustering #documentation #effectiveness #linear #mining #performance #using
Fast and Effective Text Mining Using Linear-Time Document Clustering (BL, CA), pp. 16–22.
KDD-1999-ProvostJO #performance
Efficient Progressive Sampling (FJP, DJ, TO), pp. 23–32.
KDD-1999-GuralnikS #detection
Event Detection from Time Series Data (VG, JS), pp. 33–42.
KDD-1999-DongL #difference #mining #performance #roadmap
Efficient Mining of Emerging Patterns: Discovering Trends and Differences (GD, JL), pp. 43–52.
KDD-1999-FawcettP #behaviour #monitoring #process
Activity Monitoring: Noticing Interesting Changes in Behavior (TF, FJP), pp. 53–62.
KDD-1999-GaffneyS #clustering #modelling
Trajectory Clustering with Mixtures of Regression Models (SG, PS), pp. 63–72.
KDD-1999-GantiGR #category theory #clustering #named #summary #using
CACTUS — Clustering Categorical Data Using Summaries (VG, JG, RR), pp. 73–83.
KDD-1999-ChengFZ #clustering #mining
Entropy-based Subspace Clustering for Mining Numerical Data (CHC, AWCF, YZ), pp. 84–93.
KDD-1999-ManiDBD #data mining #mining #modelling #statistics
Statistics and Data Mining Techniques for Lifetime Value Modeling (DRM, JD, AB, PD), pp. 94–103.
KDD-1999-RogersLW #mining #modelling
Mining GPS Data to Augment Road Models (SR, PL, CW), pp. 104–113.
KDD-1999-LeeSM #data flow #detection #experience #mining #network
Mining in a Data-Flow Environment: Experience in Network Intrusion Detection (WL, SJS, KWM), pp. 114–124.
KDD-1999-LiuHM
Pruning and Summarizing the Discovered Associations (BL, WH, YM), pp. 125–134.
KDD-1999-BrinRS #mining
Mining Optimized Gain Rules for Numeric Attributes (SB, RR, KS), pp. 135–144.
KDD-1999-BayardoA #mining
Mining the Most Interesting Rules (RJBJ, RA), pp. 145–154.
KDD-1999-Domingos #classification #named
MetaCost: A General Method for Making Classifiers Cost-Sensitive (PMD), pp. 155–164.
KDD-1999-MeretakisW #classification #naive bayes #using
Extending Naïve Bayes Classifiers Using Long Itemsets (DM, BW), pp. 165–174.
KDD-1999-BonchiGMP #classification #detection
A Classification-Based Methodology for Planning Audit Strategies in Fraud Detection (FB, FG, GM, DP), pp. 175–184.
KDD-1999-Piatetsky-ShapiroM #modelling
Estimating Campaign Benefits and Modeling Lift (GPS, BMM), pp. 185–193.
KDD-1999-Potts #network
Generalized Additive Neural Networks (WJEP), pp. 194–200.
KDD-1999-AggarwalWWY #approach #collaboration #graph
Horting Hatches an Egg: A New Graph-Theoretic Approach to Collaborative Filtering (CCA, JLW, KLW, PSY), pp. 201–212.
KDD-1999-WijsenNC #dependence
Discovering Roll-Up Dependencies (JW, RTN, TC), pp. 213–222.
KDD-1999-ShanmugasundaramFB #approximate #query
Compressed Data Cubes for OLAP Aggregate Query Approximation on Continuous Dimensions (JS, UMF, PSB), pp. 223–232.
KDD-1999-BennettFG #approximate #nearest neighbour #query
Density-Based Indexing for Approximate Nearest-Neighbor Queries (KPB, UMF, DG), pp. 233–243.
KDD-1999-NagDD #interactive #using
Using a Knowledge Cache for Interactive Discovery of Association Rules (BN, PD, DJD), pp. 244–253.
KDD-1999-BrijsSVW #case study #using
Using Association Rules for Product Assortment Decisions: A Case Study (TB, GS, KV, GW), pp. 254–260.
KDD-1999-AumannL #statistics
A Statistical Theory for Quantitative Association Rules (YA, YL), pp. 261–270.
KDD-1999-SyedLS #case study #independence
A Study of Support Vectors on Model Independent Example Selection (NAS, HL, KKS), pp. 272–276.
KDD-1999-PellegM #algorithm #geometry #reasoning
Accelerating Exact k-means Algorithms with Geometric Reasoning (DP, AWM), pp. 277–281.
KDD-1999-HuangY #adaptation #query
Adaptive Query Processing for Time-Series Data (YWH, PSY), pp. 282–286.
KDD-1999-AyanTA #algorithm #performance #scalability
An Efficient Algorithm to Update Large Itemsets with Early Pruning (NFA, AUT, MEA), pp. 287–291.
KDD-1999-Cerquides #induction
Applying General Bayesian Techniques to Improve TAN Induction (JC), pp. 292–296.
KDD-1999-TungLHF #mining #transaction
Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules (AKHT, HL, JH, LF), pp. 297–301.
KDD-1999-BayP #category theory #data mining #detection #mining #set
Detecting Change in Categorical Data: Mining Contrast Sets (SDB, MJP), pp. 302–306.
KDD-1999-WangWLSSZ #algorithm #clustering #data mining #mining
Evaluating a Class of Distance-Mapping Algorithms for Data Mining and Clustering (JTLW, XW, KIL, DS, BAS, KZ), pp. 307–311.
KDD-1999-ZhangRL #database #estimation #kernel #performance #scalability #using
Fast Density Estimation Using CF-Kernel for Very Large Databases (TZ, RR, ML), pp. 312–316.
KDD-1999-SyedLS99a #concept #incremental #learning
Handling Concept Drifts in Incremental Learning with Support Vector Machines (NAS, HL, KKS), pp. 317–321.
KDD-1999-Oates #clustering #identification #multi #sequence
Identifying Distinctive Subsequences in Multivariate Time Series by Clustering (TO), pp. 322–326.
KDD-1999-CortesP #agile #deployment #framework #mining #platform
Information Mining Platforms: An Infrastructure for KDD Rapid Deployment (CC, DP), pp. 327–331.
KDD-1999-Sahar #what
Interestingness via What is Not Interesting (SS), pp. 332–336.
KDD-1999-LiuHM99a #mining #multi
Mining Association Rules with Multiple Minimum Supports (BL, WH, YM), pp. 337–341.
KDD-1999-LeshZO #classification #mining #sequence
Mining Features for Sequence Classification (NL, MJZ, MO), pp. 342–346.
KDD-1999-MegalooikonomouDH #database #image #mining
Mining Lesion-Deficit Associations in a Brain Image Database (VM, CD, EH), pp. 347–351.
KDD-1999-AggarwalGY #categorisation #clustering #on the
On the Merits of Building Categorization Systems by Supervised Clustering (CCA, SCG, PSY), pp. 352–356.
KDD-1999-MannilaPS #predict #using
Prediction with Local Patterns using Cross-Entropy (HM, DP, PS), pp. 357–361.
KDD-1999-FanSZ #distributed #learning #online #scalability
The Application of AdaBoost for Distributed, Scalable and On-Line Learning (WF, SJS, JZ), pp. 362–366.
KDD-1999-KellyHA #classification #performance
The Impact of Changing Populations on Classifier Performance (MGK, DJH, NMA), pp. 367–371.
KDD-1999-BuntineFP #automation #data mining #mining #source code #synthesis #towards
Towards Automated Synthesis of Data Mining Programs (WLB, BF, TP), pp. 372–376.
KDD-1999-AdomaviciusT #personalisation #profiling #validation
User Profiling in Personalization Applications Through Rule Discovery and Validation (GA, AT), pp. 377–381.
KDD-1999-BarbaraW #approximate #data analysis #using
Using Approximations to Scale Exploratory Data Analysis in Datacubes (DB, XW), pp. 382–386.
KDD-1999-DaviesM #dataset #network
Bayesian Networks for Lossless Dataset Compression (SD, AWM), pp. 387–391.
KDD-1999-AnkerstEEK #approach #classification #interactive #visual notation
Visual Classification: An Interactive Approach to Decision Tree Construction (MA, CE, ME, HPK), pp. 392–396.
KDD-1999-DorreGS #mining
Text Mining: Finding Nuggets in Mountains of Textual Data (JD, PG, RS), pp. 398–401.
KDD-1999-ShewhartW #monitoring #topic
Monitoring a Newsfeed for Hot Topics (MS, MW), pp. 402–404.
KDD-1999-LouieK #named #visualisation
Origami: A New Data Visualization Tool (JQL, TK), pp. 405–408.
KDD-1999-RossetMNIP #challenge
Discovery of Fraud Rules for Telecommunications — Challenges and Solutions (SR, UM, EN, YI, GP), pp. 409–413.
KDD-1999-KaudererNAJ #optimisation
Optimization of Collection Efforts in Automobile Financing — a KDD Supported Environment (HK, GN, FA, HJ), pp. 414–416.
KDD-1999-HotzNPS #data mining #industrial #mining
WAPS, a Data Mining Support Environment for the Planning of Warranty and Goodwill Costs in the Automobile Industry (EH, GN, BP, HS), pp. 417–419.
KDD-1999-Chatziantoniou #data transformation #emf #sql
The PanQ Tool and EMF SQL for Complex Data Management (DC), pp. 420–424.
KDD-1999-ClearDHHLMMRSWX #information management #sql
NonStop SQL/MX Primitives for Knowledge Discovery (JC, DD, BH, MLH, PL, AM, MM, LR, AS, RMW, MX), pp. 425–429.
KDD-1999-LiuHMC #mining #using
Mining Interesting Knowledge Using DM-II (BL, WH, YM, SC), pp. 430–434.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.