Usama M. Fayyad, Surajit Chaudhuri, David Madigan
Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining
KDD, 1999.
@proceedings{KDD-1999, acmid = "312129", address = "San Diego, California, USA", editor = "Usama M. Fayyad and Surajit Chaudhuri and David Madigan", isbn = "1-58113-143-7", publisher = "{ACM}", title = "{Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining}", year = 1999, }
Contents (64 items)
- KDD-1999-Agrawal #data mining #mining
- Data Mining: Crossing the Chasm (RA), p. 2.
- KDD-1999-Hackathorn #web
- Farming the Web for Systematic Business Intelligence (RDH), p. 3.
- KDD-1999-Pregibon #named #statistics
- 2001: A Statistical Odyssey (DP), p. 4.
- KDD-1999-DuMouchelVJCP
- Squashing Flat Files Flatter (WD, CV, TJ, CC, DP), pp. 6–15.
- KDD-1999-LarsenA #clustering #documentation #effectiveness #linear #mining #performance #using
- Fast and Effective Text Mining Using Linear-Time Document Clustering (BL, CA), pp. 16–22.
- KDD-1999-ProvostJO #performance
- Efficient Progressive Sampling (FJP, DJ, TO), pp. 23–32.
- KDD-1999-GuralnikS #detection
- Event Detection from Time Series Data (VG, JS), pp. 33–42.
- KDD-1999-DongL #difference #mining #performance #roadmap
- Efficient Mining of Emerging Patterns: Discovering Trends and Differences (GD, JL), pp. 43–52.
- KDD-1999-FawcettP #behaviour #monitoring #process
- Activity Monitoring: Noticing Interesting Changes in Behavior (TF, FJP), pp. 53–62.
- KDD-1999-GaffneyS #clustering #modelling
- Trajectory Clustering with Mixtures of Regression Models (SG, PS), pp. 63–72.
- KDD-1999-GantiGR #category theory #clustering #named #summary #using
- CACTUS — Clustering Categorical Data Using Summaries (VG, JG, RR), pp. 73–83.
- KDD-1999-ChengFZ #clustering #mining
- Entropy-based Subspace Clustering for Mining Numerical Data (CHC, AWCF, YZ), pp. 84–93.
- KDD-1999-ManiDBD #data mining #mining #modelling #statistics
- Statistics and Data Mining Techniques for Lifetime Value Modeling (DRM, JD, AB, PD), pp. 94–103.
- KDD-1999-RogersLW #mining #modelling
- Mining GPS Data to Augment Road Models (SR, PL, CW), pp. 104–113.
- KDD-1999-LeeSM #data flow #detection #experience #mining #network
- Mining in a Data-Flow Environment: Experience in Network Intrusion Detection (WL, SJS, KWM), pp. 114–124.
- KDD-1999-LiuHM
- Pruning and Summarizing the Discovered Associations (BL, WH, YM), pp. 125–134.
- KDD-1999-BrinRS #mining
- Mining Optimized Gain Rules for Numeric Attributes (SB, RR, KS), pp. 135–144.
- KDD-1999-BayardoA #mining
- Mining the Most Interesting Rules (RJBJ, RA), pp. 145–154.
- KDD-1999-Domingos #classification #named
- MetaCost: A General Method for Making Classifiers Cost-Sensitive (PMD), pp. 155–164.
- KDD-1999-MeretakisW #classification #naive bayes #using
- Extending Naïve Bayes Classifiers Using Long Itemsets (DM, BW), pp. 165–174.
- KDD-1999-BonchiGMP #classification #detection
- A Classification-Based Methodology for Planning Audit Strategies in Fraud Detection (FB, FG, GM, DP), pp. 175–184.
- KDD-1999-Piatetsky-ShapiroM #modelling
- Estimating Campaign Benefits and Modeling Lift (GPS, BMM), pp. 185–193.
- KDD-1999-Potts #network
- Generalized Additive Neural Networks (WJEP), pp. 194–200.
- KDD-1999-AggarwalWWY #approach #collaboration #graph
- Horting Hatches an Egg: A New Graph-Theoretic Approach to Collaborative Filtering (CCA, JLW, KLW, PSY), pp. 201–212.
- KDD-1999-WijsenNC #dependence
- Discovering Roll-Up Dependencies (JW, RTN, TC), pp. 213–222.
- KDD-1999-ShanmugasundaramFB #approximate #query
- Compressed Data Cubes for OLAP Aggregate Query Approximation on Continuous Dimensions (JS, UMF, PSB), pp. 223–232.
- KDD-1999-BennettFG #approximate #nearest neighbour #query
- Density-Based Indexing for Approximate Nearest-Neighbor Queries (KPB, UMF, DG), pp. 233–243.
- KDD-1999-NagDD #interactive #using
- Using a Knowledge Cache for Interactive Discovery of Association Rules (BN, PD, DJD), pp. 244–253.
- KDD-1999-BrijsSVW #case study #using
- Using Association Rules for Product Assortment Decisions: A Case Study (TB, GS, KV, GW), pp. 254–260.
- KDD-1999-AumannL #statistics
- A Statistical Theory for Quantitative Association Rules (YA, YL), pp. 261–270.
- KDD-1999-SyedLS #case study #independence
- A Study of Support Vectors on Model Independent Example Selection (NAS, HL, KKS), pp. 272–276.
- KDD-1999-PellegM #algorithm #geometry #reasoning
- Accelerating Exact k-means Algorithms with Geometric Reasoning (DP, AWM), pp. 277–281.
- KDD-1999-HuangY #adaptation #query
- Adaptive Query Processing for Time-Series Data (YWH, PSY), pp. 282–286.
- KDD-1999-AyanTA #algorithm #performance #scalability
- An Efficient Algorithm to Update Large Itemsets with Early Pruning (NFA, AUT, MEA), pp. 287–291.
- KDD-1999-Cerquides #induction
- Applying General Bayesian Techniques to Improve TAN Induction (JC), pp. 292–296.
- KDD-1999-TungLHF #mining #transaction
- Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules (AKHT, HL, JH, LF), pp. 297–301.
- KDD-1999-BayP #category theory #data mining #detection #mining #set
- Detecting Change in Categorical Data: Mining Contrast Sets (SDB, MJP), pp. 302–306.
- KDD-1999-WangWLSSZ #algorithm #clustering #data mining #mining
- Evaluating a Class of Distance-Mapping Algorithms for Data Mining and Clustering (JTLW, XW, KIL, DS, BAS, KZ), pp. 307–311.
- KDD-1999-ZhangRL #database #estimation #kernel #performance #scalability #using
- Fast Density Estimation Using CF-Kernel for Very Large Databases (TZ, RR, ML), pp. 312–316.
- KDD-1999-SyedLS99a #concept #incremental #learning
- Handling Concept Drifts in Incremental Learning with Support Vector Machines (NAS, HL, KKS), pp. 317–321.
- KDD-1999-Oates #clustering #identification #multi #sequence
- Identifying Distinctive Subsequences in Multivariate Time Series by Clustering (TO), pp. 322–326.
- KDD-1999-CortesP #agile #deployment #framework #mining #platform
- Information Mining Platforms: An Infrastructure for KDD Rapid Deployment (CC, DP), pp. 327–331.
- KDD-1999-Sahar #what
- Interestingness via What is Not Interesting (SS), pp. 332–336.
- KDD-1999-LiuHM99a #mining #multi
- Mining Association Rules with Multiple Minimum Supports (BL, WH, YM), pp. 337–341.
- KDD-1999-LeshZO #classification #mining #sequence
- Mining Features for Sequence Classification (NL, MJZ, MO), pp. 342–346.
- KDD-1999-MegalooikonomouDH #database #image #mining
- Mining Lesion-Deficit Associations in a Brain Image Database (VM, CD, EH), pp. 347–351.
- KDD-1999-AggarwalGY #categorisation #clustering #on the
- On the Merits of Building Categorization Systems by Supervised Clustering (CCA, SCG, PSY), pp. 352–356.
- KDD-1999-MannilaPS #predict #using
- Prediction with Local Patterns using Cross-Entropy (HM, DP, PS), pp. 357–361.
- KDD-1999-FanSZ #distributed #learning #online #scalability
- The Application of AdaBoost for Distributed, Scalable and On-Line Learning (WF, SJS, JZ), pp. 362–366.
- KDD-1999-KellyHA #classification #performance
- The Impact of Changing Populations on Classifier Performance (MGK, DJH, NMA), pp. 367–371.
- KDD-1999-BuntineFP #automation #data mining #mining #source code #synthesis #towards
- Towards Automated Synthesis of Data Mining Programs (WLB, BF, TP), pp. 372–376.
- KDD-1999-AdomaviciusT #personalisation #profiling #validation
- User Profiling in Personalization Applications Through Rule Discovery and Validation (GA, AT), pp. 377–381.
- KDD-1999-BarbaraW #approximate #data analysis #using
- Using Approximations to Scale Exploratory Data Analysis in Datacubes (DB, XW), pp. 382–386.
- KDD-1999-DaviesM #dataset #network
- Bayesian Networks for Lossless Dataset Compression (SD, AWM), pp. 387–391.
- KDD-1999-AnkerstEEK #approach #classification #interactive #visual notation
- Visual Classification: An Interactive Approach to Decision Tree Construction (MA, CE, ME, HPK), pp. 392–396.
- KDD-1999-DorreGS #mining
- Text Mining: Finding Nuggets in Mountains of Textual Data (JD, PG, RS), pp. 398–401.
- KDD-1999-ShewhartW #monitoring #topic
- Monitoring a Newsfeed for Hot Topics (MS, MW), pp. 402–404.
- KDD-1999-LouieK #named #visualisation
- Origami: A New Data Visualization Tool (JQL, TK), pp. 405–408.
- KDD-1999-RossetMNIP #challenge
- Discovery of Fraud Rules for Telecommunications — Challenges and Solutions (SR, UM, EN, YI, GP), pp. 409–413.
- KDD-1999-KaudererNAJ #optimisation
- Optimization of Collection Efforts in Automobile Financing — a KDD Supported Environment (HK, GN, FA, HJ), pp. 414–416.
- KDD-1999-HotzNPS #data mining #industrial #mining
- WAPS, a Data Mining Support Environment for the Planning of Warranty and Goodwill Costs in the Automobile Industry (EH, GN, BP, HS), pp. 417–419.
- KDD-1999-Chatziantoniou #data transformation #emf #sql
- The PanQ Tool and EMF SQL for Complex Data Management (DC), pp. 420–424.
- KDD-1999-ClearDHHLMMRSWX #information management #sql
- NonStop SQL/MX Primitives for Knowledge Discovery (JC, DD, BH, MLH, PL, AM, MM, LR, AS, RMW, MX), pp. 425–429.
- KDD-1999-LiuHMC #mining #using
- Mining Interesting Knowledge Using DM-II (BL, WH, YM, SC), pp. 430–434.
20 ×#mining
9 ×#using
7 ×#clustering
6 ×#classification
6 ×#data mining
6 ×#performance
4 ×#detection
4 ×#modelling
4 ×#named
3 ×#algorithm
9 ×#using
7 ×#clustering
6 ×#classification
6 ×#data mining
6 ×#performance
4 ×#detection
4 ×#modelling
4 ×#named
3 ×#algorithm