Travelled to:
1 × Australia
1 × Israel
1 × The Netherlands
6 × USA
Collaborated with:
∅ J.Raoult B.Courcelle N.Gama F.P.Preparata R.L.Rivest Z.Manna P.Flajolet J.Françon G.Kahn L.Hyafil F.Prusker
Talks about:
comput (5) optim (4) languag (3) recurs (3) program (2) semant (2) simpl (2) oper (2) dictionari (1) transform (1)
Person: Jean Vuillemin
DBLP: Vuillemin:Jean
Contributed to:
Wrote 12 papers:
- CIAA-2009-VuilleminG #automaton #normalisation #regular expression
- Compact Normal Form for Regular Languages as Xor Automata (JV, NG), pp. 24–33.
- LFP-1988-Vuillemin
- Exact Real Computer Arithmetic with Continued Fractions (JV), pp. 14–27.
- ICALP-1981-PreparataV #fourier #integer #multi #network
- Area-Time Optimal VLSI Networks for Computing Integer Multiplications and Discrete Fourier Transform (FPP, JV), pp. 29–40.
- ICALP-1980-RaoultV #bound #semiparsing
- Optimal Unbounded Search Strategies (JCR, JV), pp. 512–530.
- STOC-1979-FlajoletFV #sequence
- Computing Integrated Costs of Sequences of Operations with Application to Dictionaries (PF, JF, JV), pp. 49–61.
- STOC-1978-RaoultV #equivalence #recursion #semantics #source code
- Operational and Semantic Equivalence between Recursive Programs (JCR, JV), pp. 75–85.
- STOC-1975-RivestV #proving
- A Generalization and Proof of the Aanderaa-Rosenberg Conjecture (RLR, JV), pp. 6–11.
- ICALP-1974-CourcelleKV #equation #equivalence #french #recursion #reduction
- Algorithmes d’equivalence et de reduction a des expressions minimales dans une classe d’equations recursives simples (BC, GK, JV), pp. 200–213.
- STOC-1974-CourcelleV #axiom #recursion #semantics
- Semantics and Axiomatics of a Simple Recursive Language (BC, JV), pp. 13–26.
- STOC-1974-HyafilPV #algorithm #performance
- An Efficient Algorithm for Computing Optimal Desk Merge Patterns (LH, FP, JV), pp. 216–229.
- STOC-1973-Vuillemin #implementation #programming language #recursion
- Correct and Optimal Implementations of Recursion in a Simple Programming Language (JV), pp. 224–239.
- ICALP-1972-MannaV #approach #fixpoint #formal method
- Fixpoint Approach to the Theory of Computation (ZM, JV), pp. 273–291.