Travelled to:
1 × Austria
1 × Canada
1 × China
1 × France
1 × Germany
8 × USA
Collaborated with:
M.F.P.O'Boyle J.E.B.Moss S.Kulkarni E.Park L.Pouchet A.Cohen F.V.Agakov E.V.Bonilla M.A.Alvarez G.Fursin J.Thomson C.K.I.Williams C.Wimmer D.Simon C.Bastoul J.Singer G.Brown I.Watson P.Sadayappan T.M.Jones S.Bartolini B.D.Bus O.Temam B.Franke M.Toussaint
Talks about:
optim (7) use (7) compil (4) predict (3) machin (3) model (3) learn (3) polyhedr (2) heurist (2) specif (2)
Person: John Cavazos
DBLP: Cavazos:John
Contributed to:
Wrote 13 papers:
- CGO-2013-KulkarniCWS #automation #heuristic #machine learning #using
- Automatic construction of inlining heuristics using machine learning (SK, JC, CW, DS), p. 12.
- CGO-2012-ParkCA #graph #modelling #predict #using
- Using graph-based program characterization for predictive modeling (EP, JC, MAA), pp. 196–206.
- OOPSLA-2012-KulkarniC #compilation #machine learning #optimisation #problem #using
- Mitigating the compiler optimization phase-ordering problem using machine learning (SK, JC), pp. 147–162.
- CGO-2011-ParkPCCS #modelling #optimisation #predict
- Predictive modeling in a polyhedral optimization space (EP, LNP, JC, AC, PS), pp. 119–129.
- DATE-2008-JonesBBCO #compilation #energy
- Instruction Cache Energy Saving Through Compiler Way-Placement (TMJ, SB, BDB, JC, MFPO), pp. 1196–1201.
- PLDI-2008-PouchetBCC #multi #optimisation
- Iterative optimization in the polyhedral model: part ii, multidimensional time (LNP, CB, AC, JC), pp. 90–100.
- CGO-2007-CavazosFABOT #compilation #optimisation #performance #using
- Rapidly Selecting Good Compiler Optimizations using Performance Counters (JC, GF, FVA, EVB, MFPO, OT), pp. 185–197.
- ISMM-2007-SingerBWC #garbage collection
- Intelligent selection of application-specific garbage collectors (JS, GB, IW, JC), pp. 91–102.
- CC-2006-CavazosMO #algorithm #hybrid #optimisation #question
- Hybrid Optimizations: Which Optimization Algorithm to Use? (JC, JEBM, MFPO), pp. 124–138.
- CGO-2006-AgakovBCFFOTTW #machine learning #optimisation #using
- Using Machine Learning to Focus Iterative Optimization (FVA, EVB, JC, BF, GF, MFPO, JT, MT, CKIW), pp. 295–305.
- ICML-2006-BonillaWACTO #predict
- Predictive search distributions (EVB, CKIW, FVA, JC, JT, MFPO), pp. 121–128.
- OOPSLA-2006-CavazosO #compilation #using
- Method-specific dynamic compilation using logistic regression (JC, MFPO), pp. 229–240.
- PLDI-2004-CavazosEM #heuristic
- Inducing heuristics to decide whether to schedule (JC, JEBM), pp. 183–194.