Travelled to:
1 × Canada
1 × Finland
1 × India
1 × Russia
1 × Switzerland
2 × Austria
2 × France
2 × Ireland
2 × Portugal
2 × Spain
3 × Germany
4 × USA
4 × United Kingdom
Collaborated with:
L.Denoyer M.Amini N.Usunier B.Dorizzi T.Artières D.Buffoni H.Zaragoza J.Vittaut S.Gao Z.Wimmer S.Tollari A.Spengler Y.Kim H.Vu H.N.Fotzo S.Marukatat B.Piwowarski J.Pessiot S.Garcia-Salicetti É.Guàrdia-Sebaoun V.Guigue B.Pradel Y.Jacob G.Dulac-Arnold A.Bellili M.Gilloux J.Guo C.Lagnier É.Gaussier C.Calauzènes C.Goutte A.Bordes L.Bottou J.Weston G.Wisniewski F.Maes R.Sicard N.Gauthier J.Marchand T.Truong A.Tombros M.Lalmas S.Brunessaux S.Brunessaux A.Mellouk D.Fanchon M.Detyniecki C.Marsala A.Fakeri-Tabrizi
Talks about:
model (11) document (9) structur (8) recognit (8) inform (8) rank (8) learn (7) line (7) system (6) text (5)
Person: Patrick Gallinari
DBLP: Gallinari:Patrick
Contributed to:
Wrote 36 papers:
- RecSys-2015-Guardia-Sebaoun #modelling #performance #recommendation
- Latent Trajectory Modeling: A Light and Efficient Way to Introduce Time in Recommender Systems (ÉGS, VG, PG), pp. 281–284.
- ECIR-2013-GaoDGG #modelling #relational
- Latent Factor BlockModel for Modelling Relational Data (SG, LD, PG, JG), pp. 447–458.
- ECIR-2013-LagnierDGG #information management #network #predict #social #using
- Predicting Information Diffusion in Social Networks Using Content and User’s Profiles (CL, LD, ÉG, PG), pp. 74–85.
- RecSys-2012-PradelUG #evaluation #metric #ranking
- Ranking with non-random missing ratings: influence of popularity and positivity on evaluation metrics (BP, NU, PG), pp. 147–154.
- CIKM-2011-GaoDG #predict
- Temporal link prediction by integrating content and structure information (SG, LD, PG), pp. 1169–1174.
- CIKM-2011-JacobDG #classification #corpus #multi #social #using
- Classification and annotation in social corpora using multiple relations (YJ, LD, PG), pp. 1215–1220.
- ECIR-2011-BuffoniTG #ranking
- The Importance of the Depth for Text-Image Selection Strategy in Learning-To-Rank (DB, ST, PG), pp. 743–746.
- ECIR-2011-Dulac-ArnoldDG #approach #classification
- Text Classification: A Sequential Reading Approach (GDA, LD, PG), pp. 411–423.
- ICML-2011-BuffoniCGU #learning #standard
- Learning Scoring Functions with Order-Preserving Losses and Standardized Supervision (DB, CC, PG, NU), pp. 825–832.
- DocEng-2010-SpenglerG #documentation #layout #random #web
- Document structure meets page layout: loopy random fields for web news content extraction (AS, PG), pp. 151–160.
- SIGIR-2010-KimAGG #clustering #documentation #multi
- Multi-view clustering of multilingual documents (YMK, MRA, CG, PG), pp. 821–822.
- ECIR-2009-TollariDMFAG #concept #image #retrieval #visual notation
- Exploiting Visual Concepts to Improve Text-Based Image Retrieval (ST, MD, CM, AFT, MRA, PG), pp. 701–705.
- ICML-2009-UsunierBG #classification #order #ranking
- Ranking with ordered weighted pairwise classification (NU, DB, PG), pp. 1057–1064.
- CIKM-2008-KimPAG #clustering #documentation
- An extension of PLSA for document clustering (YMK, JFP, MRA, PG), pp. 1345–1346.
- ICEIS-AIDSS-2007-PessiotTUAG #collaboration #learning #rank
- Learning to Rank for Collaborative Filtering (JFP, TVT, NU, MRA, PG), pp. 145–151.
- ICML-2007-BordesBGW #multi
- Solving multiclass support vector machines with LaRank (AB, LB, PG, JW), pp. 89–96.
- MLDM-2007-WisniewskiMDG #documentation #probability
- Probabilistic Model for Structured Document Mapping (GW, FM, LD, PG), pp. 854–867.
- ECIR-2006-VittautG #information retrieval #machine learning #ranking
- Machine Learning Ranking for Structured Information Retrieval (JNV, PG), pp. 338–349.
- CIKM-2005-AminiTULG #documentation #learning #using #xml
- Learning to summarise XML documents using content and structure (MRA, AT, NU, ML, PG), pp. 297–298.
- CIKM-2005-VuG #retrieval #using
- Using RankBoost to compare retrieval systems (HTV, PG), pp. 309–310.
- ECIR-2005-AminiUG #algorithm #automation #clustering #ranking #summary
- Automatic Text Summarization Based on Word-Clusters and Ranking Algorithms (MRA, NU, PG), pp. 142–156.
- ICEIS-v2-2004-FotzoG #documentation #information management #topic
- Information Access via Topic Hierarchies and Thematic Annotations from Document Collections (HNF, PG), pp. 69–76.
- DocEng-2003-DenoyerVGBB #classification #documentation #multi
- Structured multimedia document classification (LD, JNV, PG, SB, SB), pp. 153–160.
- ICDAR-2003-MarukatatSAG #flexibility #online #recognition
- A Flexible Recognition Engine for Complex On-line Handwritten Character Recognition (SM, RS, TA, PG), pp. 1048–1052.
- MLDM-2003-DenoyerG #categorisation #documentation #generative #xml
- A Belief Networks-Based Generative Model for Structured Documents. An Application to the XML Categorization (LD, PG), pp. 328–342.
- MLDM-2003-PiwowarskiG #documentation #information retrieval #machine learning
- A Machine Learning Model for Information Retrieval with Structured Documents (BP, PG), pp. 425–438.
- SIGIR-2002-AminiG #learning #summary #using
- The use of unlabeled data to improve supervised learning for text summarization (MRA, PG), pp. 105–112.
- ICDAR-2001-BelliliGG #hybrid
- An Hybrid MLP-SVM Handwritten Digit Recognizer (AB, MG, PG), pp. 28–33.
- ICDAR-2001-GauthierAGD #online #recognition
- Strategies for Combining On-line and Off-line Information in an On-line Handwriting Recognition System (NG, TA, PG, BD), pp. 412–416.
- ICDAR-2001-MarukatatAGD #hybrid #modelling #recognition
- Sentence Recognition through Hybrid Neuro-Markovian Modeling (SM, TA, PG, BD), pp. 731–737.
- ICPR-v2-2000-ArtieresMGD #modelling #multi #online #recognition
- Multi-Modal Segmental Models for On-Line Handwriting Recognition (TA, JMM, PG, BD), pp. 2247–2250.
- ACIR-1999-AminiZG #automation #information management #modelling #sequence
- Sequence Models for Automatic Highlighting and Surface Information Extraction (MRA, HZ, PG).
- ICDAR-1999-WimmerDG #recognition #taxonomy #word
- Dictionary Preselection in a Neuro-Markovian Word Recognition System (ZW, BD, PG), pp. 539–542.
- ACIR-1998-ZaragozaG #information management #information retrieval #modelling #probability
- Coupled Hierarchical IR and Stochastic Models for Surface Information Extraction (HZ, PG).
- ICPR-1996-Garcia-SalicettiDGW #adaptation #online #predict #recognition #word
- Adaptive discrimination in an HMM-based neural predictive system for on-line word recognition (SGS, BD, PG, ZW), pp. 515–519.
- ICDAR-v1-1995-Garcia-SalicettiDGMF #markov #online #predict #recognition
- A hidden Markov model extension of a neural predictive system for on-line character recognition (SGS, BD, PG, AM, DF), pp. 50–53.