Pádraig Cunningham, Neil J. Hurley, Ido Guy, Sarabjot Singh Anand
Proceedings of the Sixth Conference on Recommender Systems
RecSys, 2012.
@proceedings{RecSys-2012, acmid = "2365952", address = "Dublin, Ireland", editor = "Pádraig Cunningham and Neil J. Hurley and Ido Guy and Sarabjot Singh Anand", isbn = "978-1-4503-1270-7", publisher = "{ACM}", title = "{Proceedings of the Sixth Conference on Recommender Systems}", year = 2012, }
Contents (71 items)
- RecSys-2012-Kohavi #online #statistics
- Online controlled experiments: introduction, learnings, and humbling statistics (RK), pp. 1–2.
- RecSys-2012-Knijnenburg #recommendation
- Conducting user experiments in recommender systems (BPK), pp. 3–4.
- RecSys-2012-NunesH #overview #perspective #recommendation
- Personality-based recommender systems: an overview (MASNN, RH), pp. 5–6.
- RecSys-2012-Amatriain #recommendation
- Building industrial-scale real-world recommender systems (XA), pp. 7–8.
- RecSys-2012-SaidTH #challenge #recommendation
- The challenge of recommender systems challenges (AS, DT, AH), pp. 9–10.
- RecSys-2012-RodriguezPZ #multi #optimisation #recommendation
- Multiple objective optimization in recommender systems (MR, CP, EZ), pp. 11–18.
- RecSys-2012-RibeiroLVZ #multi #recommendation
- Pareto-efficient hybridization for multi-objective recommender systems (MTR, AL, AV, NZ), pp. 19–26.
- RecSys-2012-CremonesiGT #elicitation
- User effort vs. accuracy in rating-based elicitation (PC, FG, RT), pp. 27–34.
- RecSys-2012-BostandjievOH #hybrid #interactive #named #recommendation #visual notation
- TasteWeights: a visual interactive hybrid recommender system (SB, JO, TH), pp. 35–42.
- RecSys-2012-KnijnenburgBOK #recommendation #social
- Inspectability and control in social recommenders (BPK, SB, JO, AK), pp. 43–50.
- RecSys-2012-ShaQMD #roadmap
- Spotting trends: the wisdom of the few (XS, DQ, PM, MD), pp. 51–58.
- RecSys-2012-Diaz-AvilesDSN #realtime #recommendation #social
- Real-time top-n recommendation in social streams (EDA, LD, LST, WN), pp. 59–66.
- RecSys-2012-YangSGL #network #on the #recommendation #social #using
- On top-k recommendation using social networks (XY, HS, YG, YL), pp. 67–74.
- RecSys-2012-MolingBR #feedback #recommendation
- Optimal radio channel recommendations with explicit and implicit feedback (OM, LB, FR), pp. 75–82.
- RecSys-2012-TakacsT #personalisation #ranking
- Alternating least squares for personalized ranking (GT, DT), pp. 83–90.
- RecSys-2012-YangCZLY #feedback #mining #music #recommendation
- Local implicit feedback mining for music recommendation (DY, TC, WZ, QL, YY), pp. 91–98.
- RecSys-2012-KluverNESR #how #question #rating
- How many bits per rating? (DK, TTN, MDE, SS, JR), pp. 99–106.
- RecSys-2012-StrickrothP #community #network #quality #recommendation
- High quality recommendations for small communities: the case of a regional parent network (SS, NP), pp. 107–114.
- RecSys-2012-LeviMDT #recommendation
- Finding a needle in a haystack of reviews: cold start context-based hotel recommender system (AL, OM, CD, NT), pp. 115–122.
- RecSys-2012-RaghavanGG #collaboration #overview #quality
- Review quality aware collaborative filtering (SR, SG, JG), pp. 123–130.
- RecSys-2012-HaririMB #music #recommendation #topic
- Context-aware music recommendation based on latenttopic sequential patterns (NH, BM, RDB), pp. 131–138.
- RecSys-2012-ShiKBLOH #collaboration #learning #named #rank
- CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering (YS, AK, LB, ML, NO, AH), pp. 139–146.
- RecSys-2012-PradelUG #evaluation #metric #ranking
- Ranking with non-random missing ratings: influence of popularity and positivity on evaluation metrics (BP, NU, PG), pp. 147–154.
- RecSys-2012-NingK #linear #recommendation
- Sparse linear methods with side information for top-n recommendations (XN, GK), pp. 155–162.
- RecSys-2012-SchelterBM #pipes and filters #scalability #similarity
- Scalable similarity-based neighborhood methods with MapReduce (SS, CB, VM), pp. 163–170.
- RecSys-2012-AntunesCG #approach #development #recommendation
- An approach to context-based recommendation in software development (BA, JC, PG), pp. 171–178.
- RecSys-2012-ZhangTSWY #approach #image #recommendation #semantics
- A semantic approach to recommending text advertisements for images (WZ, LT, XS, HW, YY), pp. 179–186.
- RecSys-2012-Saez-TrumperQC #distance
- Ads and the city: considering geographic distance goes a long way (DST, DQ, JC), pp. 187–194.
- RecSys-2012-WeinsbergBIT #gender #named #obfuscation
- BlurMe: inferring and obfuscating user gender based on ratings (UW, SB, SI, NT), pp. 195–202.
- RecSys-2012-Herbrich #distributed #learning #online #realtime
- Distributed, real-time bayesian learning in online services (RH), pp. 203–204.
- RecSys-2012-Lempel #challenge #recommendation #web
- Recommendation challenges in web media settings (RL), pp. 205–206.
- RecSys-2012-Lamere #question #what
- I’ve got 10 million songs in my pocket: now what? (PL), pp. 207–208.
- RecSys-2012-AharonKLK #elicitation #personalisation #recommendation
- Dynamic personalized recommendation of comment-eliciting stories (MA, AK, RL, YK), pp. 209–212.
- RecSys-2012-BelloginP #clustering #collaboration #graph #using
- Using graph partitioning techniques for neighbour selection in user-based collaborative filtering (AB, JP), pp. 213–216.
- RecSys-2012-BollenGW #memory management #retrieval
- Remembering the stars?: effect of time on preference retrieval from memory (DGFMB, MPG, MCW), pp. 217–220.
- RecSys-2012-DeDGM #difference #learning #using
- Local learning of item dissimilarity using content and link structure (AD, MSD, NG, PM), pp. 221–224.
- RecSys-2012-PessemierDM #design #evaluation #recommendation
- Design and evaluation of a group recommender system (TDP, SD, LM), pp. 225–228.
- RecSys-2012-Diaz-AvilesGN #rank #recommendation
- Swarming to rank for recommender systems (EDA, MG, WN), pp. 229–232.
- RecSys-2012-EkstrandR #algorithm #predict #recommendation
- When recommenders fail: predicting recommender failure for algorithm selection and combination (MDE, JR), pp. 233–236.
- RecSys-2012-HuangXP #matrix
- Constrained collective matrix factorization (YJH, EWX, RP), pp. 237–240.
- RecSys-2012-JiangJFZ #recommendation
- Recommending academic papers via users’ reading purposes (YJ, AJ, YF, DZ), pp. 241–244.
- RecSys-2012-LiuXCGXBZ #recommendation
- Influential seed items recommendation (QL, BX, EC, YG, HX, TB, YZ), pp. 245–248.
- RecSys-2012-Manzato #recommendation
- Discovering latent factors from movies genres for enhanced recommendation (MGM), pp. 249–252.
- RecSys-2012-NoiaMOR #modelling #recommendation #web
- Exploiting the web of data in model-based recommender systems (TDN, RM, VCO, DR), pp. 253–256.
- RecSys-2012-PraweshP #feedback #probability #recommendation
- Probabilistic news recommender systems with feedback (SP, BP), pp. 257–260.
- RecSys-2012-SalimansPG #collaboration #learning #ranking
- Collaborative learning of preference rankings (TS, UP, TG), pp. 261–264.
- RecSys-2012-WuGRR #microblog #recommendation
- Making recommendations in a microblog to improve the impact of a focal user (SW, LG, WR, LR), pp. 265–268.
- RecSys-2012-Zanker #information management #recommendation
- The influence of knowledgeable explanations on users’ perception of a recommender system (MZ), pp. 269–272.
- RecSys-2012-AminYSBP #delivery #network #recommendation #social
- Social referral: leveraging network connections to deliver recommendations (MSA, BY, SS, AB, CP), pp. 273–276.
- RecSys-2012-BellufXG #case study #online #personalisation #recommendation #scalability
- Case study on the business value impact of personalized recommendations on a large online retailer (TB, LX, RG), pp. 277–280.
- RecSys-2012-KoenigsteinNPS #recommendation
- The Xbox recommender system (NK, NN, UP, NS), pp. 281–284.
- RecSys-2012-LiuCCY #named #recommendation
- Enlister: baidu’s recommender system for the biggest chinese Q&A website (QL, TC, JC, DY), pp. 285–288.
- RecSys-2012-SmythCB #deployment #named #social
- HeyStaks: a real-world deployment of social search (BS, MC, PB), pp. 289–292.
- RecSys-2012-BrigadirGC #twitter
- A system for twitter user list curation (IB, DG, PC), pp. 293–294.
- RecSys-2012-ChhabraR #named #recommendation
- CubeThat: news article recommender (SC, PR), pp. 295–296.
- RecSys-2012-DongSOMS
- The demonstration of the reviewer’s assistant (RD, MS, MPO, KM, BS), pp. 297–298.
- RecSys-2012-GertnerLW #enterprise #recommendation
- Recommenders for the enterprise: event, contact, and group (ASG, BL, JW), pp. 299–300.
- RecSys-2012-Griffin
- Integrated content marketing (JG), pp. 301–302.
- RecSys-2012-Lathia #health #using
- Using ratings to profile your health (NL), pp. 303–304.
- RecSys-2012-LeviMDT12a #recommendation
- Finding a needle in a haystack of reviews: cold start context-based hotel recommender system demo (AL, OM, CD, NT), pp. 305–306.
- RecSys-2012-PhelanMS #named #realtime #twitter #using
- Yokie: explorations in curated real-time search & discovery using twitter (OP, KM, BS), pp. 307–308.
- RecSys-2012-SheehanP #named #personalisation #predict #student
- pGPA: a personalized grade prediction tool to aid student success (MS, YP), pp. 309–310.
- RecSys-2012-SklarSH #realtime #recommendation
- Recommending interesting events in real-time with foursquare check-ins (MS, BS, AH), pp. 311–312.
- RecSys-2012-Heitmann #framework #graph #multi #personalisation #semantics
- An open framework for multi-source, cross-domain personalisation with semantic interest graphs (BH), pp. 313–316.
- RecSys-2012-KarimiFNS #learning #matrix #recommendation
- Exploiting the characteristics of matrix factorization for active learning in recommender systems (RK, CF, AN, LST), pp. 317–320.
- RecSys-2012-KramarB #personalisation
- Dynamically selecting an appropriate context type for personalisation (TK, MB), pp. 321–324.
- RecSys-2012-Landia #documentation #folksonomy #recommendation
- Utilising document content for tag recommendation in folksonomies (NL), pp. 325–328.
- RecSys-2012-Ninaus #heuristic #recommendation #requirements #using
- Using group recommendation heuristics for the prioritization of requirements (GN), pp. 329–332.
- RecSys-2012-Parra #recommendation #visualisation
- Beyond lists: studying the effect of different recommendation visualizations (DP), pp. 333–336.
- RecSys-2012-Wakeling #design #library #recommendation
- The user-centered design of a recommender system for a universal library catalogue (SW), pp. 337–340.
- RecSys-2012-ZelenikB #information management #recommendation
- Reducing the sparsity of contextual information for recommender systems (DZ, MB), pp. 341–344.
44 ×#recommendation
8 ×#named
6 ×#personalisation
6 ×#using
5 ×#learning
5 ×#social
4 ×#collaboration
4 ×#realtime
3 ×#feedback
3 ×#multi
8 ×#named
6 ×#personalisation
6 ×#using
5 ×#learning
5 ×#social
4 ×#collaboration
4 ×#realtime
3 ×#feedback
3 ×#multi