Travelled to:
1 × Chile
1 × China
1 × France
1 × Russia
1 × United Kingdom
2 × Ireland
2 × USA
Collaborated with:
J.M.Jose B.Piwowarski ∅ F.E.Pollick A.J.McMinn P.J.McParlane S.Whiting A.A.Bolourian C.J.v.Rijsbergen M.Matthews R.Blanco L.R.Pinto D.Agarwal I.Frommholz M.Lalmas K.v.Rijsbergen M.Allegretti M.Hadjigeorgieva G.Pasi
Talks about:
relev (5) recommend (3) collabor (3) filter (3) featur (3) studi (3) emot (3) use (3) feedback (2) retriev (2)
Person: Yashar Moshfeghi
DBLP: Moshfeghi:Yashar
Contributed to:
Wrote 13 papers:
- SIGIR-2015-AllegrettiMHPJP
- When Relevance Judgement is Happening?: An EEG-based Study (MA, YM, MH, FEP, JMJ, GP), pp. 719–722.
- CIKM-2013-McMinnMJ #corpus #detection #scalability #twitter
- Building a large-scale corpus for evaluating event detection on twitter (AJM, YM, JMJ), pp. 409–418.
- ECIR-2013-MoshfeghiMBJ #component #timeline
- Influence of Timeline and Named-Entity Components on User Engagement (YM, MM, RB, JMJ), pp. 305–317.
- ECIR-2013-MoshfeghiPPJ #comprehension
- Understanding Relevance: An fMRI Study (YM, LRP, FEP, JMJ), pp. 14–25.
- SIGIR-2013-McParlaneMJ #on the #recommendation
- On contextual photo tag recommendation (PJM, YM, JMJ), pp. 965–968.
- SIGIR-2013-MoshfeghiJ #behaviour #effectiveness #feedback #using
- An effective implicit relevance feedback technique using affective, physiological and behavioural features (YM, JMJ), pp. 133–142.
- ECIR-2011-MoshfeghiJ #collaboration #recommendation
- Role of Emotional Features in Collaborative Recommendation (YM, JMJ), pp. 738–742.
- SIGIR-2011-MoshfeghiPJ #collaboration #semantics #using
- Handling data sparsity in collaborative filtering using emotion and semantic based features (YM, BP, JMJ), pp. 625–634.
- SIGIR-2011-WhitingMJ #feedback #pseudo
- Exploring term temporality for pseudo-relevance feedback (SW, YM, JMJ), pp. 1245–1246.
- ECIR-2010-PiwowarskiFMLR #documentation
- Filtering Documents with Subspaces (BP, IF, YM, ML, KvR), pp. 615–618.
- ECIR-2009-MoshfeghiAPJ #collaboration #predict #rating #recommendation #semantics
- Movie Recommender: Semantically Enriched Unified Relevance Model for Rating Prediction in Collaborative Filtering (YM, DA, BP, JMJ), pp. 54–65.
- SIGIR-2009-BolourianMR #named #quantifier #topic #using
- SugarCube: quantification of topic propagation in the blogosphere using percolation theory (AAB, YM, CJvR), pp. 786–787.
- SIGIR-2009-Moshfeghi #adaptation #retrieval
- Affective adaptive retrieval: study of emotion in adaptive retrieval (YM), p. 852.