41 papers:
- ICML-2015-IoffeS #network #normalisation
- Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (SI, CS), pp. 448–456.
- ICML-c2-2014-WangL #estimation #metric #robust
- Robust Inverse Covariance Estimation under Noisy Measurements (JKW, SdL), pp. 928–936.
- ICML-c2-2014-WenYG #learning #nondeterminism #robust
- Robust Learning under Uncertain Test Distributions: Relating Covariate Shift to Model Misspecification (JW, CNY, RG), pp. 631–639.
- ICML-c2-2014-YangLR14a #matrix
- Elementary Estimators for Sparse Covariance Matrices and other Structured Moments (EY, ACL, PDR), pp. 397–405.
- ICPR-2014-YangLLYL #estimation #identification #modelling
- Color Models and Weighted Covariance Estimation for Person Re-identification (YY, SL, ZL, DY, SZL), pp. 1874–1879.
- ICPR-2014-ZhaiSDJ #multi
- Covariance-Based PCA for Multi-size Data (MZ, FS, DD, NJ), pp. 1603–1608.
- ICML-c3-2013-ShenderL #trade-off
- Computation-Risk Tradeoffs for Covariance-Thresholded Regression (DS, JDL), pp. 756–764.
- ICML-c3-2013-WuHG #modelling #multi
- Dynamic Covariance Models for Multivariate Financial Time Series (YW, JMHL, ZG), pp. 558–566.
- ICML-c3-2013-ZhangZWKYM #kernel
- Covariate Shift in Hilbert Space: A Solution via Sorrogate Kernels (KZ, VWZ, QW, JTYK, QY, IM), pp. 388–395.
- KDD-2013-LozanoJD #distance #estimation #matrix #multi #robust
- Robust sparse estimation of multiresponse regression and inverse covariance matrix via the L2 distance (ACL, HJ, XD), pp. 293–301.
- ICML-2012-JanzaminA #composition #independence #markov
- High-Dimensional Covariance Decomposition into Sparse Markov and Independence Domains (MJ, AA), p. 60.
- ICML-2012-KolarX #consistency
- Consistent Covariance Selection From Data With Missing Values (MK, EPX), p. 85.
- ICML-2012-StulpS #adaptation #matrix #policy
- Path Integral Policy Improvement with Covariance Matrix Adaptation (FS, OS), p. 201.
- ICML-2012-YuS #analysis #kernel
- Analysis of Kernel Mean Matching under Covariate Shift (YY, CS), p. 150.
- ICPR-2012-AnoopMBBR #representation #set
- Covariance profiles: A signature representation for object sets (AKA, AM, UDB, CB, KRR), pp. 2541–2544.
- ICPR-2012-LiW #encoding #matrix #recognition #using
- Iris recognition using ordinal encoding of Log-Euclidean covariance matrices (PL, GW), pp. 2420–2423.
- ICPR-2012-ZhangFWZJ #image #scalability #using
- Scalable image co-segmentation using color and covariance features (SZ, WF, LW, JZ, JJ), pp. 3708–3711.
- KDD-2011-WangBB #analysis #component #matrix #multi
- Common component analysis for multiple covariance matrices (HW, AB, DB), pp. 956–964.
- ICML-2010-KolarPX #on the #parametricity
- On Sparse Nonparametric Conditional Covariance Selection (MK, APP, EPX), pp. 559–566.
- ICML-2010-Seeger #scalability
- Gaussian Covariance and Scalable Variational Inference (MWS), pp. 967–974.
- ICPR-2010-CaiTP #people
- Matching Groups of People by Covariance Descriptor (YC, VT, MP), pp. 2744–2747.
- ICPR-2010-SattiGCP #adaptation #human-computer #interface
- A Covariate Shift Minimisation Method to Alleviate Non-stationarity Effects for an Adaptive Brain-Computer Interface (ARS, CG, DC, GP), pp. 105–108.
- ICPR-2010-UekiSI #adaptation #estimation
- Perceived Age Estimation under Lighting Condition Change by Covariate Shift Adaptation (KU, MS, YI), pp. 3400–3403.
- ICML-2009-ChoiCW #markov #modelling #multi
- Exploiting sparse Markov and covariance structure in multiresolution models (MJC, VC, ASW), pp. 177–184.
- KDD-2009-SunPLCWLRY #estimation #mining
- Mining brain region connectivity for alzheimer’s disease study via sparse inverse covariance estimation (LS, RP, JL, KC, TW, JL, ER, JY), pp. 1335–1344.
- ICPR-2008-DonoserB #matrix #segmentation #using
- Using covariance matrices for unsupervised texture segmentation (MD, HB), pp. 1–4.
- ICPR-2008-PalaioB #adaptation #multi #using
- Multi-object tracking using an adaptive transition model particle filter with region covariance data association (HP, JB), pp. 1–4.
- ICPR-2008-WangH #case study #modelling #online #recognition
- A study of semi-tied covariance modeling for online handwritten Chinese character recognition (YW, QH), pp. 1–5.
- ICPR-2008-ZhangYLCG
- A covariance-based method for dynamic background subtraction (SZ, HY, SL, XC, WG), pp. 1–4.
- HIMI-IIE-2007-TaguchiAT #analysis
- Information on the Causal Relationship Between Store kaizen and Store Features That Attract Customers by Covariance Structural Analysis (YT, YA, TT), pp. 973–982.
- DATE-2005-KangPR #analysis #statistics #using
- Statistical Timing Analysis using Levelized Covariance Propagation (KK, BCP, KR), pp. 764–769.
- KDD-2004-ChilsonNWZ #correlation #matrix #parallel #robust
- Parallel computation of high dimensional robust correlation and covariance matrices (JC, RTN, AW, RHZ), pp. 533–538.
- SAC-2004-SurazhskyG #c++ #type safety
- Type-safe covariance in C++ (VS, JYG), pp. 1496–1502.
- ICPR-v2-2002-Vaswani #classification #linear #matrix
- A Linear Classifier for Gaussian Class Conditional Distributions with Unequal Covariance Matrices (NV), pp. 60–63.
- KDD-2002-AlqallafKMZ #correlation #data mining #mining #robust #scalability
- Scalable robust covariance and correlation estimates for data mining (FAA, KPK, RDM, RHZ), pp. 14–23.
- TOOLS-PACIFIC-1999-SchmolitzkyEKM #how #question #type safety
- How Can Covariance in Pragmatical Class Methods be Made Statically Type-Safe? (AS, ME, JLK, GM), pp. 200–209.
- ICPR-1998-LiuH #recognition #using
- Using centroid covariance in target recognition (GL, RMH), pp. 1343–1346.
- ICPR-1998-NicollsJ #estimation
- Maximum likelihood estimation of Toeplitz-block-Toeplitz covariances in the presence of subspace interference (FN, GdJ), pp. 1595–1597.
- ECOOP-1996-BoylandC #compilation #type safety
- Type-Safe Compilation of Covariant Specialization: A Practical Case (JB, GC), pp. 3–25.
- DAC-1993-MotoharaHMMKSS #algorithm #matrix #traversal #using
- A State Traversal Algorithm Using a State Covariance Matrix (AM, TH, MM, HM, KK, YS, SS), pp. 97–101.
- TOOLS-USA-1992-Weber #correctness #how
- Getting Class Correctness and System Correctness Equivalent (How to get covariance right) (FW), pp. 199–213.