174 papers:
- STOC-2015-ZhuLO #matrix #multi
- Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates (ZAZ, ZL, LO), pp. 237–245.
- ICML-2015-BoutsidisKG #clustering
- Spectral Clustering via the Power Method — Provably (CB, PK, AG), pp. 40–48.
- ICML-2015-ChenS #rank
- Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons (YC, CS), pp. 371–380.
- ICML-2015-GhoshdastidarD #clustering
- A Provable Generalized Tensor Spectral Method for Uniform Hypergraph Partitioning (DG, AD), pp. 400–409.
- ICML-2015-Yang0JZ #bound #fault #set
- An Explicit Sampling Dependent Spectral Error Bound for Column Subset Selection (TY, LZ, RJ, SZ), pp. 135–143.
- KDD-2015-GleichM #algorithm #graph #learning #using
- Using Local Spectral Methods to Robustify Graph-Based Learning Algorithms (DFG, MWM), pp. 359–368.
- KDD-2015-LiuLWTF #clustering
- Spectral Ensemble Clustering (HL, TL, JW, DT, YF), pp. 715–724.
- DATE-2014-KarakonstantisSSAB #analysis #approach #energy #variability
- A quality-scalable and energy-efficient approach for spectral analysis of heart rate variability (GK, AS, MMS, DA, AB), pp. 1–6.
- DRR-2014-LiPLD #analysis #online #verification
- On-line signature verification method by Laplacian spectral analysis and dynamic time warping (CL, LP, CL, XD), p. ?–10.
- DLT-2014-Sinya #automaton #finite #graph
- Graph Spectral Properties of Deterministic Finite Automata — (Short Paper) (RS), pp. 76–83.
- ICML-c1-2014-DenisGH #bound #learning #matrix
- Dimension-free Concentration Bounds on Hankel Matrices for Spectral Learning (FD, MG, AH), pp. 449–457.
- ICML-c2-2014-GleichM #algorithm #approximate #case study
- Anti-differentiating approximation algorithms: A case study with min-cuts, spectral, and flow (DG, MWM), pp. 1018–1025.
- ICML-c2-2014-QuattoniBCG #sequence
- Spectral Regularization for Max-Margin Sequence Tagging (AQ, BB, XC, AG), pp. 1710–1718.
- ICML-c2-2014-ValkoMKK #graph
- Spectral Bandits for Smooth Graph Functions (MV, RM, BK, TK), pp. 46–54.
- ICPR-2014-BruneauPO #algorithm #automation #clustering #heuristic
- A Heuristic for the Automatic Parametrization of the Spectral Clustering Algorithm (PB, OP, BO), pp. 1313–1318.
- ICPR-2014-GuoZLCZ #clustering #kernel #learning #multi
- Multiple Kernel Learning Based Multi-view Spectral Clustering (DG, JZ, XL, YC, CZ), pp. 3774–3779.
- ICPR-2014-HiraiOHT
- An HDR Spectral Imaging System for Time-Varying Omnidirectional Scene (KH, NO, TH, ST), pp. 2059–2064.
- ICPR-2014-HuynhR #image
- Recovery of Spectral Sensitivity Functions from a Colour Chart Image under Unknown Spectrally Smooth Illumination (CPH, ARK), pp. 708–713.
- ICPR-2014-IoannidisCL #clustering #modelling #multi #using
- Key-Frame Extraction Using Weighted Multi-view Convex Mixture Models and Spectral Clustering (AI, VC, AL), pp. 3463–3468.
- ICPR-2014-JenzriFG #robust
- Robust Context Dependent Spectral Unmixing (HJ, HF, PDG), pp. 643–647.
- ICPR-2014-KacheleZMS #feature model #quality #recognition #using
- Prosodic, Spectral and Voice Quality Feature Selection Using a Long-Term Stopping Criterion for Audio-Based Emotion Recognition (MK, DZ, SM, FS), pp. 803–808.
- ICPR-2014-LefevreAG #clustering
- Brain Lobes Revealed by Spectral Clustering (JL, GA, DG), pp. 562–567.
- ICPR-2014-NocetiO #classification #graph #kernel #process
- A Spectral Graph Kernel and Its Application to Collective Activities Classification (NN, FO), pp. 3892–3897.
- ICPR-2014-Ozay #image #multi #segmentation
- Semi-supervised Segmentation Fusion of Multi-spectral and Aerial Images (MO), pp. 3839–3844.
- ICPR-2014-TasdemirMY #approximate #clustering
- Geodesic Based Similarities for Approximate Spectral Clustering (KT, YM, IY), pp. 1360–1364.
- KDD-2014-WangZQZ #using
- Improving the modified nyström method using spectral shifting (SW, CZ, HQ, ZZ), pp. 611–620.
- SAC-2014-QuilleTR #analysis
- Spectral analysis and text processing over the computer science literature: patterns and discoveries (RVEQ, CTJ, JFRJ), pp. 653–657.
- DATE-2013-TodorovMRS #approach #clustering #synthesis
- A spectral clustering approach to application-specific network-on-chip synthesis (VT, DMG, HR, US), pp. 1783–1788.
- STOC-2013-KwokLLGT #algorithm #analysis #clustering #difference #higher-order
- Improved Cheeger’s inequality: analysis of spectral partitioning algorithms through higher order spectral gap (TCK, LCL, YTL, SOG, LT), pp. 11–20.
- STOC-2013-Miller #graph #optimisation #problem #scalability #using
- Solving large optimization problems using spectral graph theory (GLM), p. 981.
- DLT-2013-Jungers
- Joint Spectral Characteristics: A Tale of Three Disciplines (RMJ), pp. 27–28.
- HCI-III-2013-YangWC #clustering #fuzzy #image #kernel #segmentation #similarity
- Kernel Fuzzy Similarity Measure-Based Spectral Clustering for Image Segmentation (YY, YW, YmC), pp. 246–253.
- ICML-c1-2013-BootsG #approach #learning
- A Spectral Learning Approach to Range-Only SLAM (BB, GJG), pp. 19–26.
- ICML-c3-2013-ChagantyL #linear
- Spectral Experts for Estimating Mixtures of Linear Regressions (ATC, PL), pp. 1040–1048.
- ICML-c3-2013-ChenC #matrix
- Spectral Compressed Sensing via Structured Matrix Completion (YC, YC), pp. 414–422.
- ICML-c3-2013-HuangS #learning #markov #modelling
- Spectral Learning of Hidden Markov Models from Dynamic and Static Data (TKH, JGS), pp. 630–638.
- STOC-2012-LeeGT #clustering #higher-order #multi
- Multi-way spectral partitioning and higher-order cheeger inequalities (JRL, SOG, LT), pp. 1117–1130.
- STOC-2012-OrecchiaSV #algorithm #approximate #exponential
- Approximating the exponential, the lanczos method and an Õ(m)-time spectral algorithm for balanced separator (LO, SS, NKV), pp. 1141–1160.
- CIKM-2012-ShangJLW #learning
- Learning spectral embedding via iterative eigenvalue thresholding (FS, LCJ, YL, FW), pp. 1507–1511.
- ICML-2012-BalleQC #learning #modelling #optimisation
- Local Loss Optimization in Operator Models: A New Insight into Spectral Learning (BB, AQ, XC), p. 236.
- ICML-2012-DhillonRFU #modelling #using #word
- Using CCA to improve CCA: A new spectral method for estimating vector models of words (PSD, JR, DPF, LHU), p. 13.
- ICPR-2012-FuLBF
- Spectral correspondence method for fingerprint minutia matching (XF, CL, JB, JF), pp. 1743–1746.
- ICPR-2012-GuiST #analysis #estimation #parametricity
- Regularization parameter estimation for spectral regression discriminant analysis based on perturbation theory (JG, ZS, TT), pp. 401–404.
- ICPR-2012-HuZFZ #clustering #multi #strict
- Multi-way constrained spectral clustering by nonnegative restriction (HH, JZ, JF, JZ), pp. 1550–1553.
- ICPR-2012-LamSS #image #statistics #using
- Denoising hyperspectral images using spectral domain statistics (AL, IS, YS), pp. 477–480.
- ICPR-2012-MitraKGSMLOVM #clustering #multimodal #performance
- Spectral clustering to model deformations for fast multimodal prostate registration (JM, ZK, SG, DS, RM, XL, AO, JCV, FM), pp. 2622–2625.
- ICPR-2012-PanS #3d
- 3D shape isometric correspondence by spectral assignment (XP, LGS), pp. 2210–2213.
- ICPR-2012-RatnasingamR #recognition #representation
- A spectral reflectance representation for recognition and reproduction (SR, ARK), pp. 1900–1903.
- ICPR-2012-ZhangH #feature model #recognition #using
- Face recognition using semi-supervised spectral feature selection (ZZ, ERH), pp. 1294–1297.
- ICPR-2012-ZhangH12a #feature model #recognition
- Unsupervised spectral feature selection for face recognition (ZZ, ERH), pp. 1787–1790.
- KDD-2012-CorreaL #clustering #graph #using
- Locally-scaled spectral clustering using empty region graphs (CDC, PL), pp. 1330–1338.
- KDD-2012-WauthierJJ #clustering #nondeterminism #reduction
- Active spectral clustering via iterative uncertainty reduction (FLW, NJ, MIJ), pp. 1339–1347.
- KDIR-2012-VolkovichA #clustering
- Model Selection and Stability in Spectral Clustering (ZV, RA), pp. 25–34.
- HPDC-2012-HefeedaGA #approximate #clustering #dataset #distributed #scalability
- Distributed approximate spectral clustering for large-scale datasets (MH, FG, WAA), pp. 223–234.
- ICST-2012-MalikK #analysis #graph #using
- Dynamic Shape Analysis Using Spectral Graph Properties (MZM, SK), pp. 211–220.
- HCI-MIIE-2011-MinKH #recognition #using
- Spectral Subtraction Based Emotion Recognition Using EEG (JHM, HOK, KSH), pp. 569–576.
- CIKM-2011-KimKFL #analysis
- Spectral analysis of a blogosphere (SWK, KNK, CF, JHL), pp. 2145–2148.
- ICML-2011-DasK #algorithm #approximate #set #taxonomy
- Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection (AD, DK), pp. 1057–1064.
- ICML-2011-KumarD #approach #clustering #multi
- A Co-training Approach for Multi-view Spectral Clustering (AK, HDI), pp. 393–400.
- ICML-2011-ParikhSX #algorithm #modelling #visual notation
- A Spectral Algorithm for Latent Tree Graphical Models (APP, LS, EPX), pp. 1065–1072.
- KDIR-2011-AzamV #clustering #comparative #evaluation #metric #proximity
- A Comparative Evaluation of Proximity Measures for Spectral Clustering (NFA, HLV), pp. 30–41.
- STOC-2010-Kannan #matrix
- Spectral methods for matrices and tensors (RK), pp. 1–12.
- STOC-2010-RaghavendraST #approximate #graph #parametricity
- Approximations for the isoperimetric and spectral profile of graphs and related parameters (PR, DS, PT), pp. 631–640.
- CIKM-2010-FangSS #clustering #learning #multi
- Multilevel manifold learning with application to spectral clustering (HrF, SS, YS), pp. 419–428.
- CIKM-2010-KunegisFB #evolution #network
- Network growth and the spectral evolution model (JK, DF, CB), pp. 739–748.
- ICML-2010-BshoutyL #clustering #linear #using
- Finding Planted Partitions in Nearly Linear Time using Arrested Spectral Clustering (NHB, PML), pp. 135–142.
- ICML-2010-NiuDJ #clustering #multi
- Multiple Non-Redundant Spectral Clustering Views (DN, JGD, MIJ), pp. 831–838.
- ICPR-2010-BatesLM #representation
- Scale-Space Spectral Representation of Shape (JB, XL, WM), pp. 2648–2651.
- ICPR-2010-BourlaiKRCH #verification
- Cross-Spectral Face Verification in the Short Wave Infrared (SWIR) Band (TB, NDK, AR, BC, LH), pp. 1343–1347.
- ICPR-2010-BozkurtEEE #recognition #speech
- Use of Line Spectral Frequencies for Emotion Recognition from Speech (EB, EE, ÇEE, ATE), pp. 3708–3711.
- ICPR-2010-IbrahimTH #image #invariant #representation
- Spectral Invariant Representation for Spectral Reflectance Image (AI, ST, TH), pp. 2776–2779.
- ICPR-2010-LettnerS #robust
- Combining Spectral and Spatial Features for Robust Foreground-Background Separation (ML, RS), pp. 1969–1972.
- ICPR-2010-ManciniFZ #detection #multi
- Road Change Detection from Multi-Spectral Aerial Data (AM, EF, PZ), pp. 448–451.
- ICPR-2010-SfikasHN #analysis #clustering #multi #using
- Multiple Atlas Inference and Population Analysis Using Spectral Clustering (GS, CH, CN), pp. 2500–2503.
- ICPR-2010-SmeetsFHVS #3d #approach #composition #invariant #modelling #recognition #using
- Fusion of an Isometric Deformation Modeling Approach Using Spectral Decomposition and a Region-Based Approach Using ICP for Expression-Invariant 3D Face Recognition (DS, TF, JH, DV, PS), pp. 1172–1175.
- ICPR-2010-TekeT #image #multi #strict #using
- Multi-spectral Satellite Image Registration Using Scale-Restricted SURF (MT, AT), pp. 2310–2313.
- ICPR-2010-XuV
- Binary Representations of Fingerprint Spectral Minutiae Features (HX, RNJV), pp. 1212–1216.
- KDD-2010-WangD #clustering #flexibility
- Flexible constrained spectral clustering (XW, ID), pp. 563–572.
- DAC-2009-CochranR
- Spectral techniques for high-resolution thermal characterization with limited sensor data (RC, SR), pp. 478–483.
- ICDAR-2009-LettnerS #documentation #image #multi #segmentation
- Spatial and Spectral Based Segmentation of Text in Multispectral Images of Ancient Documents (ML, RS), pp. 813–817.
- ICML-2009-BuhlerH #clustering #graph
- Spectral clustering based on the graph p-Laplacian (TB, MH), pp. 81–88.
- ICML-2009-KumarMT #approximate #composition #on the
- On sampling-based approximate spectral decomposition (SK, MM, AT), pp. 553–560.
- ICML-2009-KunegisL #graph transformation #learning #predict
- Learning spectral graph transformations for link prediction (JK, AL), pp. 561–568.
- KDD-2009-YanHJ #approximate #clustering #performance
- Fast approximate spectral clustering (DY, LH, MIJ), pp. 907–916.
- MLDM-2009-SakaiI #clustering #performance #random
- Fast Spectral Clustering with Random Projection and Sampling (TS, AI), pp. 372–384.
- CASE-2008-SunEHMMMBLM #analysis #automation #biology #integration #multi #user interface
- Integration of user interface, device control, data acquisition and analysis for automated multi-spectral imaging of single biological cells (CSS, JRE, MH, TWM, SKM, SM, LWB, MEL, DRM), pp. 1013–1018.
- DATE-2008-TcheghoMS
- Optimal High-Resolution Spectral Analyzer (AT, HM, SS), pp. 62–67.
- ICML-2008-ColemanSW #clustering #consistency
- Spectral clustering with inconsistent advice (TC, JS, AW), pp. 152–159.
- ICPR-2008-AndriyashinPJ #dependence
- Illuminant dependence of PCA, NMF and NTF in spectral color imaging (AA, JP, TJ), pp. 1–4.
- ICPR-2008-LezorayTE #clustering #graph
- Impulse noise removal by spectral clustering and regularization on graphs (OL, VTT, AE), pp. 1–4.
- ICPR-2008-LiuDJM #3d #kernel #robust
- Kernel functions for robust 3D surface registration with spectral embeddings (XL, AD, MJ, WM), pp. 1–4.
- ICPR-2008-LiZWH #analysis #clustering #multi
- Multiclass spectral clustering based on discriminant analysis (XL, ZZ, YW, WH), pp. 1–4.
- ICPR-2008-XiaoWH #graph #invariant #recognition #using
- Object recognition using graph spectral invariants (XB, RCW, ERH), pp. 1–4.
- KDD-2008-LingDXYY #learning
- Spectral domain-transfer learning (XL, WD, GRX, QY, YY), pp. 488–496.
- KDD-2008-SunJY #classification #learning #multi
- Hypergraph spectral learning for multi-label classification (LS, SJ, JY), pp. 668–676.
- SIGIR-2008-LiuLLJ #clustering #geometry #query #ranking
- Spectral geometry for simultaneously clustering and ranking query search results (YL, WL, YL, LJ), pp. 539–546.
- DATE-2007-ZhuZCXZ #grid #probability #process
- A sparse grid based spectral stochastic collocation method for variations-aware capacitance extraction of interconnects under nanometer process technology (HZ, XZ, WC, JX, DZ), pp. 1514–1519.
- ICDAR-2007-PapavassiliouSKC #parametricity #verification
- A Parametric Spectral-Based Method for Verification of Text in Videos (VP, TS, VK, GC), pp. 879–883.
- CIKM-2007-CaiHZH #locality
- Regularized locality preserving indexing via spectral regression (DC, XH, WVZ, JH), pp. 741–750.
- ECIR-2007-LiuYZQM #clustering #optimisation #performance #scalability
- Fast Large-Scale Spectral Clustering by Sequential Shrinkage Optimization (TYL, HYY, XZ, TQ, WYM), pp. 319–330.
- ICML-2007-LiYW #distance #framework #learning #metric #reduction
- A transductive framework of distance metric learning by spectral dimensionality reduction (FL, JY, JW), pp. 513–520.
- ICML-2007-TomiokaA #matrix
- Classifying matrices with a spectral regularization (RT, KA), pp. 895–902.
- ICML-2007-ZhaoL #feature model #learning
- Spectral feature selection for supervised and unsupervised learning (ZZ, HL), pp. 1151–1157.
- ICML-2007-ZhouB #clustering #learning #multi
- Spectral clustering and transductive learning with multiple views (DZ, CJCB), pp. 1159–1166.
- KDD-2007-ChiSZHT #clustering
- Evolutionary spectral clustering by incorporating temporal smoothness (YC, XS, DZ, KH, BLT), pp. 153–162.
- KDD-2007-ShigaTM #approach #clustering #composition #network
- A spectral clustering approach to optimally combining numericalvectors with a modular network (MS, IT, HM), pp. 647–656.
- ICALP-v1-2006-Coja-Oghlan #adaptation #clustering #graph #heuristic #random
- An Adaptive Spectral Heuristic for Partitioning Random Graphs (ACO), pp. 691–702.
- ICALP-v1-2006-Coja-OghlanL #graph #random
- The Spectral Gap of Random Graphs with Given Expected Degrees (ACO, AL), pp. 15–26.
- ICML-2006-LongZWY #clustering #multi #relational
- Spectral clustering for multi-type relational data (BL, Z(Z, XW, PSY), pp. 585–592.
- ICML-2006-MoghaddamWA #bound
- Generalized spectral bounds for sparse LDA (BM, YW, SA), pp. 641–648.
- ICML-2006-XiaoSB #reduction
- A duality view of spectral methods for dimensionality reduction (LX, JS, SPB), pp. 1041–1048.
- ICML-2006-ZhangK #kernel #matrix #performance
- Block-quantized kernel matrix for fast spectral embedding (KZ, JTK), pp. 1097–1104.
- ICPR-v1-2006-FuTC #orthogonal #using
- Specular Free Spectral Imaging Using Orthogonal Subspace Projection (ZF, RTT, TC), pp. 812–815.
- ICPR-v2-2006-ScarpaH #clustering #independence #segmentation
- Unsupervised Texture Segmentation by Spectral-Spatial-Independent Clustering (GS, MH), pp. 151–154.
- ICPR-v4-2006-WhiteW #graph
- Mixing spectral representations of graphs (DHW, RCW), pp. 140–144.
- SAC-2006-GuoW #data mining #mining #on the #privacy
- On the use of spectral filtering for privacy preserving data mining (SG, XW), pp. 622–626.
- STOC-2005-Vu #matrix #random
- Spectral norm of random matrices (VHV), pp. 423–430.
- ICML-2005-ShaS #analysis #reduction
- Analysis and extension of spectral methods for nonlinear dimensionality reduction (FS, LKS), pp. 784–791.
- SIGIR-2005-BastM #retrieval #why
- Why spectral retrieval works (HB, DM), pp. 11–18.
- STOC-2004-Kelner #bound #clustering #graph
- Spectral partitioning, eigenvalue bounds, and circle packings for graphs of bounded genus (JAK), pp. 455–464.
- STOC-2004-KempeM #algorithm #analysis #distributed
- A decentralized algorithm for spectral analysis (DK, FM), pp. 561–568.
- ICML-2004-DingH #clustering
- Linearized cluster assignment via spectral ordering (CHQD, XH).
- ICPR-v1-2004-ChabrierELRM #evaluation #image #multi #segmentation
- Unsupervised Evaluation of Image Segmentation Application to Multi-spectral Images (SC, BE, HL, CR, PM), pp. 576–579.
- ICPR-v1-2004-KalenovaTB #image
- Spectral Image Distortion Map (DK, PJT, VB), pp. 668–671.
- ICPR-v2-2004-CostaGB
- Spectral Characterization of Orientation Data along Curvilinear Structures (JPDC, CG, PB), pp. 517–520.
- ICPR-v2-2004-DroriFY
- Spectral Sound Gap Filling (ID, AF, YY), pp. 871–874.
- ICPR-v2-2004-LindgrenH #component #image #independence #learning #representation
- Learning High-level Independent Components of Images through a Spectral Representation (JTL, AH), pp. 72–75.
- ICPR-v2-2004-PranckevicieneBS #classification #identification
- Consensus-Based Identification of Spectral Signatures for Classification of High-Dimensional Biomedical Spectra (EP, RB, RLS), pp. 319–322.
- ICPR-v2-2004-Srinivasan #approximate #segmentation
- Small-world Approximations in Spectral Segmentation (SHS), pp. 36–39.
- ICPR-v2-2004-WilsonH #distance #graph
- Levenshtein Distance for Graph Spectral Features (RCW, ERH), pp. 489–492.
- ICPR-v3-2004-BaiYH #graph #using
- Graph Matching using Spectral Embedding and Alignment (XB, HY, ERH), pp. 398–401.
- ICPR-v3-2004-LuoWH #graph
- Graph Manifolds from Spectral Polynomials (BL, RCW, ERH), pp. 402–405.
- ICPR-v4-2004-PaclikVD #algorithm #feature model #multi
- Multi-Class Extensions of the GLDB Feature Extraction Algorithm for Spectral Data (PP, SV, RPWD), pp. 629–632.
- ICPR-v4-2004-ParkJZK #clustering #graph
- Support Vector Clustering Combined with Spectral Graph Partitioning (JHP, XJ, HZ, RK), pp. 581–584.
- KDD-2004-DhillonGK #clustering #kernel #normalisation
- Kernel k-means: spectral clustering and normalized cuts (ISD, YG, BK), pp. 551–556.
- DAC-2003-VasudevanR #using
- Computation of noise spectral density in switched capacitor circuits using the mixed-frequency-time technique (VV, MR), pp. 538–541.
- DATE-2003-LupeaPJ #analysis #named
- RF-BIST: Loopback Spectral Signature Analysis (DL, UP, HJJ), pp. 10478–10483.
- SIGMOD-2003-CohenM
- Spectral Bloom Filters (SC, YM), pp. 241–252.
- ICML-2003-Joachims #clustering #graph #learning
- Transductive Learning via Spectral Graph Partitioning (TJ), pp. 290–297.
- WCRE-2002-ShokoufandehMM #clustering
- Applying Spectral Methods to Software Clustering (AS, SM, MM), pp. 3–10.
- ICPR-v1-2002-CarcassoniRH #analysis #recognition
- Texture Recognition through Modal Analysis of Spectral Peak Patterns (MC, ER, ERH), pp. 243–246.
- ICPR-v1-2002-CarvalhoSDR #constraints #estimation #linear
- Bayes Information Criterion for Tikhonov Regularization with Linear Constraints: Application to Spectral Data Estimation (PDC, AS, AD, BR), pp. 696–700.
- ICPR-v1-2002-LiuS #classification #recognition #representation
- A Spectral Representation for Appearance-Based Classification and Recognition (XL, AS), pp. 37–40.
- ICPR-v3-2002-LuoWH02a #approach #graph #learning
- Graph Spectral Approach for Learning View Structure (BL, RCW, ERH), pp. 785–788.
- ICPR-v3-2002-Robles-KellyH #approach
- A Graph-Spectral Approach to Surface Segmentatio (ARK, ERH), pp. 509–508.
- ICPR-v4-2002-Robles-KellyH02a #approach
- A Graph-Spectral Approach to Correspondence Matching (ARK, ERH), pp. 176–179.
- SIGIR-2002-Shalev-ShwartzDFS #modelling #query #robust
- Robust temporal and spectral modeling for query By melody (SSS, SD, NF, YS), pp. 331–338.
- DATE-2001-GianiSHA #performance
- Efficient spectral techniques for sequential ATPG (AG, SS, MSH, VDA), pp. 204–208.
- DATE-2001-ThorntonD #diagrams #graph transformation #using
- Spectral decision diagrams using graph transformations (MAT, RD), pp. 713–719.
- STOC-2001-AzarFKMS #analysis
- Spectral analysis of data (YA, AF, ARK, FM, JS), pp. 619–626.
- KDD-2001-Dhillon #clustering #documentation #graph #using #word
- Co-clustering documents and words using bipartite spectral graph partitioning (ISD), pp. 269–274.
- KDD-2001-DingHZ #component #graph #web
- A spectral method to separate disconnected and nearly-disconnected web graph components (CHQD, XH, HZ), pp. 275–280.
- ICPR-v1-2000-RibeiroH
- Texture Plane Orientation from Spectral Accumulation (ER, ERH), pp. 1802–1806.
- ICPR-v1-2000-TominagaO #multi #recognition
- Object Recognition by Multi-Spectral Imaging with a Liquid Crystal Filter (ST, RO), pp. 1708–1711.
- ICPR-v3-2000-CamilleriP #bound #refinement
- Spectral Unmixing of Mixed Pixels for Texture Boundary Refinement (KPC, MP), pp. 7096–7099.
- ICPR-v3-2000-ManabeKC #metric
- Simultaneous Measurement of Spectral Distribution and Shape (YM, SK, KC), pp. 3811–3814.
- ICPR-v3-2000-RibeiroH00a #adaptation
- A Scale Adaptive Method for Focusing Spectral Peaks (ER, ERH), pp. 3123–3126.
- ICPR-v3-2000-Tajima #evaluation
- Consideration and Experiments on Object Spectral Reflectance for Color Sensor Evaluation/Calibration (JT), pp. 3592–3595.
- ICPR-v4-2000-KhorsheedC #multi #recognition #using #word
- Multi-Font Arabic Word Recognition Using Spectral Features (MSK, WFC), pp. 4543–4546.
- ICPR-1998-ManabeZI #estimation #geometry #image
- Estimation of illuminant spectral distribution with geometrical information from spectral image (YM, XZ, SI), pp. 1464–1466.
- ICPR-1998-NakaiMI #analysis #simulation
- Simulation and analysis of spectral distributions of human skin (HN, YM, SI), pp. 1065–1067.
- STOC-1997-LaffertyR
- Spectral Techniques for Expander Codes (JDL, DNR), pp. 160–167.
- DAC-1996-HansenS #diagrams #synthesis #using
- Synthesis by Spectral Translation Using Boolean Decision Diagrams (JPH, MS), pp. 248–253.
- DAC-1996-LiLLC #approach #clustering #linear
- New Spectral Linear Placement and Clustering Approach (JL, JL, LTL, CKC), pp. 88–93.
- ICPR-1996-Ben-ArieWR #invariant #recognition
- Iconic recognition with affine-invariant spectral signatures (JBA, ZW, KRR), pp. 672–676.
- ICPR-1996-LabonteDC #representation #sequence
- A compact representation for stereoscopic sequences with NTSC spectral compatibility (FL, CTLD, PC), pp. 646–650.
- ICPR-1996-ManabeI #image #recognition #using
- Recognition of material types using spectral image (YM, SI), pp. 840–843.
- ICPR-1996-SenguptaB #clustering #using
- Using spectral features for modelbase partitioning (KS, KLB), pp. 65–69.
- ICPR-1996-WindeattT #feature model
- Analytical feature extraction and spectral summation (TW, RT), pp. 315–319.
- DAC-1995-AlpertY #clustering
- Spectral Partitioning: The More Eigenvectors, The Better (CJA, SZY), pp. 195–200.
- KDD-1995-BuntineP #how
- Intelligent Instruments: Discovering How to Turn Spectral Data into Information (WLB, TP), pp. 33–38.
- STOC-1994-AlonK #graph #random
- A spectral technique for coloring random 3-colorable graphs (preliminary version) (NA, NK), pp. 346–355.
- DAC-1993-ChanSZ93a #clustering
- Spectral K-Way Ratio-Cut Partitioning and Clustering (PKC, MDFS, JYZ), pp. 749–754.
- DAC-1993-ClarkeMZFY #scalability
- Spectral Transforms for Large Boolean Functions with Applications to Technology Mapping (EMC, KLM, XZ, MF, JY), pp. 54–60.