115 papers:
PODS-2015-GrozM #query- Skyline Queries with Noisy Comparisons (BG, TM), pp. 185–198.
STOC-2015-LovettZ #difference- Improved Noisy Population Recovery, and Reverse Bonami-Beckner Inequality for Sparse Functions (SL, JZ), pp. 137–142.
ECIR-2015-EfremovaGC #classification- Classification of Historical Notary Acts with Noisy Labels (JE, AMG, TC), pp. 49–54.
ICML-2015-WangWS #analysis #clustering- A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data (YW, YXW, AS), pp. 1422–1431.
ICML-2015-WuGS #combinator #feedback #finite #identification #on the- On Identifying Good Options under Combinatorially Structured Feedback in Finite Noisy Environments (YW, AG, CS), pp. 1283–1291.
SIGIR-2015-ChakrabortyGP #corpus #retrieval- Retrieval from Noisy E-Discovery Corpus in the Absence of Training Data (AC, KG, SKP), pp. 755–758.
CASE-2014-LeeJMC #framework #identification #recognition #robust- Iterative identification framework for robust hand-written digit recognition under extremely noisy conditions (HL, SJ, TM, NYC), pp. 728–733.
CASE-2014-VaskeviciusP0 #locality #low cost #recognition- Fitting superquadrics in noisy, partial views from a low-cost RGBD sensor for recognition and localization of sacks in autonomous unloading of shipping containers (NV, KP, AB), pp. 255–262.
FoSSaCS-2014-AlmagorK #synthesis- Latticed-LTL Synthesis in the Presence of Noisy Inputs (SA, OK), pp. 226–241.
ICML-c2-2014-WangL #estimation #metric #robust- Robust Inverse Covariance Estimation under Noisy Measurements (JKW, SdL), pp. 928–936.
ICPR-2014-LiZSG #image- Joint Motion Deblurring with Blurred/Noisy Image Pair (HL, YZ, JS, DG), pp. 1020–1024.
ICPR-2014-PinheiroRCJS #fuzzy #independence #robust #verification- Type-2 Fuzzy GMMs for Robust Text-Independent Speaker Verification in Noisy Environments (HNBP, TIR, GDCC, IJT, JS), pp. 4531–4536.
KDIR-2014-ChakrabortyGR #approach #performance #retrieval #word- A Word Association Based Approach for Improving Retrieval Performance from Noisy OCRed Text (AC, KG, UR), pp. 450–456.
ICDAR-2013-GerdjikovMN- Extraction of Spelling Variations from Language Structure for Noisy Text Correction (SG, SM, VN), pp. 324–328.
ICDAR-2013-WemhoenerYM #multi #using- Creating an Improved Version Using Noisy OCR from Multiple Editions (DW, IZY, RM), pp. 160–164.
SIGMOD-2013-LiGC #named #realtime #sequence- ε-Matching: event processing over noisy sequences in real time (ZL, TG, CXC), pp. 601–612.
SIGMOD-2013-MoustafaMDG #analysis #declarative #interactive #named #network- GRDB: a system for declarative and interactive analysis of noisy information networks (WEM, HM, AD, LG), pp. 1085–1088.
HCI-IMT-2013-KuncMLK #speech- Speech-Based Text Correction Patterns in Noisy Environment (LK, TM, ML, JK), pp. 59–66.
CIKM-2013-ChanLKLBR #graph #matrix #using- Discovering latent blockmodels in sparse and noisy graphs using non-negative matrix factorisation (JC, WL, AK, CL, JB, KR), pp. 811–816.
CIKM-2013-RothK #modelling #quality- Feature-based models for improving the quality of noisy training data for relation extraction (BR, DK), pp. 1181–1184.
CIKM-2013-ShirakawaNHN #metric #probability #semantics #similarity #using #wiki- Probabilistic semantic similarity measurements for noisy short texts using Wikipedia entities (MS, KN, TH, SN), pp. 903–908.
ICML-c1-2013-ChenC13a- Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery (YC, CC), pp. 383–391.
ICML-c1-2013-Hennig #optimisation #performance #probability- Fast Probabilistic Optimization from Noisy Gradients (PH), pp. 62–70.
ICML-c1-2013-WangX #clustering- Noisy Sparse Subspace Clustering (YXW, HX), pp. 89–97.
ICML-c3-2013-Busa-FeketeSCWH #adaptation- Top-k Selection based on Adaptive Sampling of Noisy Preferences (RBF, BS, WC, PW, EH), pp. 1094–1102.
SAC-2013-KhaniHAB #algorithm #clustering #semistructured data #set- An algorithm for discovering clusters of different densities or shapes in noisy data sets (FK, MJH, AAA, HB), pp. 144–149.
DRR-2012-OujiLL #documentation #segmentation- Comprehensive color segmentation system for noisy digitized documents to enhance text extraction (AO, YL, FL).
CHI-2012-CasiezRV #interactive- 1 € filter: a simple speed-based low-pass filter for noisy input in interactive systems (GC, NR, DV), pp. 2527–2530.
CIKM-2012-QiYZZ #mining #multi- Mining noisy tagging from multi-label space (ZQ, MY, Z(Z, ZZ), pp. 1925–1929.
ICML-2012-MnihH #image #learning #semistructured data- Learning to Label Aerial Images from Noisy Data (VM, GEH), p. 31.
ICML-2012-YangMJZZ #kernel #learning #multi #probability #programming- Multiple Kernel Learning from Noisy Labels by Stochastic Programming (TY, MM, RJ, LZ, YZ), p. 21.
ICPR-2012-CaoCZL #clustering #query- Locating high-density clusters with noisy queries (CC, SC, CZ, JL), pp. 3537–3540.
ICPR-2012-Largeteau-SkapinZASK #set- Optimal consensus set and preimage of 4-connected circles in a noisy environment (GLS, RZ, EA, AS, YK), pp. 3774–3777.
ICPR-2012-MadabusiG #detection #image- Edge detection for facial images under noisy conditions (SM, SVG), pp. 2689–2693.
ICPR-2012-ZhaoSS #learning #predict- Importance-weighted label prediction for active learning with noisy annotations (LZ, GS, RS), pp. 3476–3479.
ICDAR-2011-ChenL #detection #documentation- Table Detection in Noisy Off-line Handwritten Documents (JC, DPL), pp. 399–403.
ICDAR-2011-ChenL11a #algorithm #detection #documentation #modelling- A Model-Based Ruling Line Detection Algorithm for Noisy Handwritten Documents (JC, DPL), pp. 404–408.
ICDAR-2011-OujiLL #documentation #image- Chromatic / Achromatic Separation in Noisy Document Images (AO, YL, FL), pp. 167–171.
FoSSaCS-2011-VelnerR #problem #synthesis- Church Synthesis Problem for Noisy Input (YV, AR), pp. 275–289.
ICEIS-J-2011-Li11f #analysis #approach #case study #machine learning #type system #using- A Study on Noisy Typing Stream Analysis Using Machine Learning Approach (JL0), pp. 149–161.
ICML-2011-AgarwalNW #composition #matrix- Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions (AA, SN, MJW), pp. 1129–1136.
ICML-2011-ZhouT #composition #matrix #named #random- GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case (TZ, DT), pp. 33–40.
SIGIR-2011-KumarL #learning #rank- Learning to rank from a noisy crowd (AK, ML), pp. 1221–1222.
DRR-2010-LiuZ #detection #documentation #image #learning- Semi-supervised learning for detecting text-lines in noisy document images (ZL, HZ), pp. 1–10.
ICML-2010-YangJJ #learning- Learning from Noisy Side Information by Generalized Maximum Entropy Model (TY, RJ, AKJ), pp. 1199–1206.
ICPR-2010-Nolazco-FloresLG #automation #recognition #speech- Speech Magnitude-Spectrum Information-Entropy (MSIE) for Automatic Speech Recognition in Noisy Environments (JANF, RAAL, LPGP), pp. 4364–4367.
ICPR-2010-TawariT #analysis #speech- Speech Emotion Analysis in Noisy Real-World Environment (AT, MMT), pp. 4605–4608.
SAC-2010-ChoePR #estimation- Dispatching AGVs with noisy estimation of crane operation time (RC, TP, KRR), pp. 1288–1293.
DAC-2009-ZhangS #estimation #using- Accurate temperature estimation using noisy thermal sensors (YZ, AS), pp. 472–477.
HT-2009-WangC #analysis #web- Use noisy link analysis to improve web search (YW, JC), pp. 377–378.
ICDAR-2009-LecerfC #documentation #feature model #scalability- Scalable Feature Extraction from Noisy Documents (LL, BC), pp. 361–365.
ICML-2009-DeodharGGCD #clustering #framework #scalability #semistructured data- A scalable framework for discovering coherent co-clusters in noisy data (MD, GG, JG, HC, ISD), pp. 241–248.
ICML-2009-YuilleZ #composition #learning- Compositional noisy-logical learning (ALY, SZ), pp. 1209–1216.
MLDM-2009-LiHLG #concept #detection #random #streaming- Concept Drifting Detection on Noisy Streaming Data in Random Ensemble Decision Trees (PPL, XH, QL, YG), pp. 236–250.
ICPR-2008-HuynhH #estimation #recursion #sequence #video- Recursive structure and motion estimation from noisy uncalibrated video sequences (DQH, AH), pp. 1–5.
KDD-2008-ShengPI #data mining #mining #multi #quality #using- Get another label? improving data quality and data mining using multiple, noisy labelers (VSS, FJP, PGI), pp. 614–622.
ICDAR-2007-ChenW #documentation #image #kernel- Exploiting Fisher Kernels in Decoding Severely Noisy Document Images (JC, YW), pp. 417–421.
ICML-2007-MylonakisSH #estimation #modelling- Unsupervised estimation for noisy-channel models (MM, KS, RH), pp. 665–672.
ICML-2007-ParkerFT #learning #performance #query #retrieval- Learning for efficient retrieval of structured data with noisy queries (CP, AF, PT), pp. 729–736.
SAC-2007-LiuMB #approach #clustering- A clustering entropy-driven approach for exploring and exploiting noisy functions (SHL, MM, BRB), pp. 738–742.
CIKM-2006-ShiN #adaptation #corpus #information retrieval #parallel- Filtering or adapting: two strategies to exploit noisy parallel corpora for cross-language information retrieval (LS, JYN), pp. 814–815.
ICPR-v1-2006-TongT #3d #multi #re-engineering #set- Multiresolution Mesh Reconstruction from Noisy 3D Point Sets (WST, CKT), pp. 5–8.
ICPR-v2-2006-ZhouBS #image #using- Extracting Lines in Noisy Image Using Directional Information (JZ, WFB, GASA), pp. 215–218.
ICPR-v4-2006-ProencaA #identification #image #normalisation- A Method for the Identification of Noisy Regions in Normalized Iris Images (HP, LAA), pp. 405–408.
DATE-2005-NazarianPTLA #analysis #modelling- Modeling and Propagation of Noisy Waveforms in Static Timing Analysis (SN, MP, ET, TL, AHA), pp. 776–777.
ICALP-2005-AsarinC #turing machine- Noisy Turing Machines (EA, PC), pp. 1031–1042.
ICML-2005-RamakrishnanCKB #approximate #classification- A model for handling approximate, noisy or incomplete labeling in text classification (GR, KPC, RK, PB), pp. 681–688.
SAC-2005-Lopresti #evaluation #performance- Performance evaluation for text processing of noisy inputs (DPL), pp. 759–763.
SIGMOD-2004-QianZZ #approach #clustering #effectiveness #named #performance- FAÇADE: A Fast and Effective Approach to the Discovery of Dense Clusters in Noisy Spatial Data (YQ, GZ, KZ), pp. 921–922.
CIAA-2004-KariKS- Substitutions, Trajectories and Noisy Channels (LK, SK, PS), pp. 202–212.
ICPR-v2-2004-Vinciarelli #categorisation- Noisy Text Categorization (AV), pp. 554–557.
SAC-2004-AvilaL #algorithm #documentation- A new algorithm for removing noisy borders from monochromatic documents (BTÁ, RDL), pp. 1219–1225.
DATE-2003-CaldariCCMGOT #modelling- SystemC Modeling of a Bluetooth Transceiver: Dynamic Management of Packet Type in a Noisy Channel (MC, MC, PC, GM, FDG, SO, CT), pp. 20214–20219.
ICDAR-2003-LucasPD #image #performance #recognition #word- Fast Lexicon-Based Word Recognition in Noisy Index Card Images (SML, GP, ACD), pp. 462–466.
ICDAR-2003-ZhengLD03a #documentation #identification #image #markov #random #using- Text Identification in Noisy Document Images Using Markov Random Field (YZ, HL, DSD), p. 599–?.
STOC-2003-CoppersmithS #higher-order #semistructured data- Reconstructing curves in three (and higher) dimensional space from noisy data (DC, MS), pp. 136–142.
ICALP-2003-BleichenbacherKY #semistructured data- Decoding of Interleaved Reed Solomon Codes over Noisy Data (DB, AK, MY), pp. 97–108.
ICEIS-v2-2003-BendouM #learning #network #semistructured data- Learning Bayesian Networks From Noisy Data (MB, PM), pp. 26–33.
ECIR-2003-AunimoHKMPV #semistructured data- Question Answering System for Incomplete and Noisy Data (LA, OH, RK, JM, RP, OV), pp. 193–206.
ICML-2003-GeibelW #learning- Perceptron Based Learning with Example Dependent and Noisy Costs (PG, FW), pp. 218–225.
ICML-2003-Graepel #difference #equation #linear #process- Solving Noisy Linear Operator Equations by Gaussian Processes: Application to Ordinary and Partial Differential Equations (TG), pp. 234–241.
ICML-2003-SebbanJ #approach #grammar inference #on the #semistructured data #statistics- On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data (MS, JCJ), pp. 688–695.
KDD-2003-YiLL #data mining #mining #web- Eliminating noisy information in Web pages for data mining (LY, BL, XL), pp. 296–305.
SIGMOD-2002-YangWYH #mining- Mining long sequential patterns in a noisy environment (JY, WW, PSY, JH), pp. 406–417.
STOC-2002-AroraK #algebra #semistructured data- Fitting algebraic curves to noisy data (SA, SK), pp. 162–169.
ICPR-v4-2002-IbrahimovSD #analysis #clustering #performance #similarity #topic- The Performance Analysis of a Chi-square Similarity Measure for Topic Related Clustering of Noisy Transcripts (OI, IKS, ND), pp. 285–288.
SAC-2002-CarlssonJ #difference #game studies- Differences between the iterated prisoner’s dilemma and the chicken game under noisy conditions (BC, KIJ), pp. 42–48.
CIKM-2001-Collins-ThompsonSD #string- Improved String Matching Under Noisy Channel Conditions (KCT, CS, STD), pp. 357–364.
ICML-2001-Jiang #aspect-oriented #semistructured data- Some Theoretical Aspects of Boosting in the Presence of Noisy Data (WJ), pp. 234–241.
ICML-2001-KriegerLW #semistructured data- Boosting Noisy Data (AK, CL, AJW), pp. 274–281.
ICML-2000-AndersonMC #approach #optimisation #parametricity- A Nonparametric Approach to Noisy and Costly Optimization (BSA, AWM, DC), pp. 17–24.
ICML-2000-Eskin #detection #probability #semistructured data #using- Anomaly Detection over Noisy Data using Learned Probability Distributions (EE), pp. 255–262.
ICML-2000-TowellPM #learning- Learning Priorities From Noisy Examples (GGT, TP, MRM), pp. 1031–1038.
ICML-2000-ZupanBBD #concept #induction #semistructured data- Induction of Concept Hierarchies from Noisy Data (BZ, IB, MB, JD), pp. 1199–1206.
ICPR-v1-2000-Brauer-BurchardtV #image #robust- Robust Vanishing Point Determination in Noisy Images (CBB, KV), pp. 1559–1562.
ICPR-v3-2000-CohenD #estimation #image- Motion Estimation in Noisy Ultrasound Images by Maximum Likelihood (BC, ID), pp. 3186–3189.
ICPR-v3-2000-DekeyserBPP #2d #image #parametricity #sequence- Super-Resolution from Noisy Image Sequences Exploiting a 2D Parametric Motion Model (FD, PB, PP, ÉP), pp. 3354–3357.
ICPR-v4-2000-ChouB #image #locality- Accurate Localization of Edges in Noisy Volume Images (PcC, MB), pp. 4760–4763.
ICPR-v4-2000-Lopez-de-TeruelRG #algorithm #image #parallel- A Parallel Algorithm for Tracking of Segments in Noisy Edge Images (PELdT, AR, JMG), pp. 4807–4811.
ICDAR-1999-NegishiKHW #automation- Character Extraction from Noisy Background for an Automatic Reference System (HN, JK, HH, TW), pp. 143–146.
ICML-1999-Teng #semistructured data- Correcting Noisy Data (CMT), pp. 239–248.
ICML-1998-MooreSBL #learning #named #optimisation- Q2: Memory-Based Active Learning for Optimizing Noisy Continuous Functions (AWM, JGS, JAB, MSL), pp. 386–394.
ICSE-1998-TesorieroZ #re-engineering- A Model of Noisy Software Engineering Data (Status Report) (RT, MVZ), pp. 461–464.
ICDAR-1997-CesariniFGMSS #architecture #recognition- A Neural-Based Architecture for Spot-Noisy Logo Recognition (FC, EF, MG, SM, JS, GS), pp. 175–179.
HCI-CC-1997-Vanderheiden97a #architecture #interface- Use of a Common Table Architecture for Creating Hands Free, Eyes Free, Noisy Environment (Flex-Modal, Flex-Input) Interfaces (GCV), pp. 449–452.
STOC-1996-EvansP #bound- Lower Bounds for Noisy Boolean Decision Trees (WSE, NP), pp. 620–628.
ICML-1996-OkamotoY #analysis #classification #nearest neighbour- Theoretical Analysis of the Nearest Neighbor Classifier in Noisy Domains (SO, NY), pp. 355–363.
ICPR-1996-AkhmetshinL #difference #fourier #image #principle #re-engineering- The reconstruction of signals and images from the noisy Fourier transform phase by means of the generalized difference principle (AMA, IL), pp. 370–375.
ICPR-1996-ChenY #symmetry #using #visual notation- Thinning noisy binary patterns using human visual symmetry (YSC, YTY), pp. 146–150.
ICPR-1996-NetanyahuPRS #detection #image #robust- Robust detection of road segments in noisy aerial images (NSN, VP, AR, AJS), pp. 151–155.
KDD-1996-Czyzewski #mining- Mining Knowledge in Noisy Audio Data (AC), pp. 220–225.
KDD-1996-Rymon- SE-Trees Outperform Decision Trees in Noisy Domains (RR), pp. 331–334.
ML-1991-DzeroskiL #comparison #empirical #learning- Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL (SD, NL), pp. 399–402.
ML-1991-PachowiczB #concept #effectiveness #recognition- Improving Recognition Effectiveness of Noisy Texture Concepts (PP, JWB), pp. 625–629.
ML-1988-TanE #classification #network #using- Using Weighted Networks to Represent Classification Knowledge in Noisy Domains (MT, LJE), pp. 121–134.