Proceedings of the 16th Working Conference on Mining Software Repositories
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Margaret-Anne D. Storey, Bram Adams, Sonia Haiduc
Proceedings of the 16th Working Conference on Mining Software Repositories
MSR, 2019.

EVOL
DBLP
Scholar
?EE?
Full names Links ISxN
@proceedings{MSR-2019,
	acmid         = "3341883",
	editor        = "Margaret-Anne D. Storey and Bram Adams and Sonia Haiduc",
	ee            = "https://ieeexplore.ieee.org/xpl/conhome/8804710/proceeding",
	isbn          = "978-1-7281-3412-3",
	publisher     = "{IEEE / ACM}",
	title         = "{Proceedings of the 16th Working Conference on Mining Software Repositories}",
	year          = 2019,
}

Contents (79 items)

MSR-2019-AkbarK #named #order #retrieval #semantics #source code
SCOR: source code retrieval with semantics and order (SAA, ACK), pp. 1–12.
MSR-2019-KovalenkoBBB #library #mining #named
PathMiner: a library for mining of path-based representations of code (VK, EB, TB, AB), pp. 13–17.
MSR-2019-TheetenVC #learning #library
Import2vec learning embeddings for software libraries (BT, FV, TVC), pp. 18–28.
MSR-2019-EfstathiouS #identifier #modelling #semantics #source code #using
Semantic source code models using identifier embeddings (VE, DS), pp. 29–33.
MSR-2019-HoangDK0U #fault #framework #learning #named #predict
DeepJIT: an end-to-end deep learning framework for just-in-time defect prediction (TH, HKD, YK, DL0, NU), pp. 34–45.
MSR-2019-DamPN0GGKK #fault #lessons learnt #predict #using
Lessons learned from using a deep tree-based model for software defect prediction in practice (HKD, TP, SWN, TT0, JCG, AG, TK, CJK), pp. 46–57.
MSR-2019-KiehnPC #classification #empirical #using #version control
Empirical study in using version histories for change risk classification (MK, XP, FC), pp. 58–62.
MSR-2019-AhluwaliaFP #dataset #fault #named #predict
Snoring: a noise in defect prediction datasets (AA, DF, MDP), pp. 63–67.
MSR-2019-BiswasVP #analysis #re-engineering #sentiment #word
Exploring word embedding techniques to improve sentiment analysis of software engineering texts (EB, KVS, LLP), pp. 68–78.
MSR-2019-RahmanRPN #stack overflow
Cleaning StackOverflow for machine translation (MR, PCR, DP, TNN), pp. 79–83.
MSR-2019-Treude0 #git #modelling #predict #stack overflow #topic
Predicting good configurations for GitHub and stack overflow topic models (CT, MW0), pp. 84–95.
MSR-2019-WickertREDM #dataset #encryption #parametricity
A dataset of parametric cryptographic misuses (AKW, MR, ME, AD, MM), pp. 96–100.
MSR-2019-RaghuramanHCSV #empirical #fault #modelling #uml
Does UML modeling associate with lower defect proneness?: a preliminary empirical investigation (AR, THQ, MRVC, AS, BV), pp. 101–104.
MSR-2019-ChrenMB0 #analysis #automation #named #reliability
STRAIT: a tool for automated software reliability growth analysis (SC, RM, BB, BR0), pp. 105–110.
MSR-2019-Beyer #fault #invariant #set
A data set of program invariants and error paths (DB0), pp. 111–115.
MSR-2019-ZhaiCD #python #source code #test coverage
Test coverage in python programs (HZ, CC, PTD), pp. 116–120.
MSR-2019-SerraGPFGB #automation #effectiveness #generative #on the #testing #years after
On the effectiveness of manual and automatic unit test generation: ten years later (DS, GG, FP, FF, HCG, AB), pp. 121–125.
MSR-2019-MitropoulosLSS #evolution #javascript
Time present and time past: analyzing the evolution of JavaScript code in the wild (DM, PL, VS, DS), pp. 126–137.
MSR-2019-PietriSZ #dataset #development #graph
The software heritage graph dataset: public software development under one roof (AP, DS, SZ), pp. 138–142.
MSR-2019-MaBAZM #framework #mining #open source
World of code: an infrastructure for mining the universe of open source VCS data (YM, CB, SA, RZ, AM), pp. 143–154.
MSR-2019-KolovosNBMP #distributed #framework #mining #named #repository
Crossflow: a framework for distributed mining of software repositories (DSK, PN, KB, NM, RFP), pp. 155–159.
MSR-2019-OliveiraOCF0 #energy #java #recommendation
Recommending energy-efficient Java collections (WO, RO, FC, BF, GP0), pp. 160–170.
MSR-2019-MatalongaCC0PSF #android #energy #mining
GreenHub farmer: real-world data for Android energy mining (HM, BC, FC, MC0, RP, SMdS, JPF), pp. 171–175.
MSR-2019-Rua0S #android #energy #metric #named #scalability #testing
GreenSource: a large-scale collection of Android code, tests and energy metrics (RR, MC0, JS), pp. 176–180.
MSR-2019-TrockmanTV #git #repository
Striking gold in software repositories?: an econometric study of cryptocurrencies on GitHub (AT, RvT, BV), pp. 181–185.
MSR-2019-TonderTG #development #git #process #set
A panel data set of cryptocurrency development activity on GitHub (RvT, AT, CLG), pp. 186–190.
MSR-2019-BaltesT0 #evolution #named #stack overflow
SOTorrent: studying the origin, evolution, and usage of stack overflow code snippets (SB, CT, SD0), pp. 191–194.
MSR-2019-CamposSMB0 #javascript #mining
Mining rule violations in JavaScript code snippets (UC, GS, JPM, RB, GP0), pp. 195–199.
MSR-2019-RahmanFI #stack overflow
Snakes in paradise?: insecure python-related coding practices in stack overflow (AR, EF, NI), pp. 200–204.
MSR-2019-DietrichLD #case study #identification #stack overflow
Man vs machine: a study into language identification of stack overflow code snippets (JD0, MLR, ED), pp. 205–209.
MSR-2019-BafatakisBBSKOW #python #stack overflow
Python coding style compliance on stack overflow (NB, NB, WB, MCS, JK, GO, RW), pp. 210–214.
MSR-2019-DiamantopoulosS #evolution #mining #stack overflow #towards
Towards mining answer edits to extract evolution patterns in stack overflow (TD, MIS, ALS), pp. 215–219.
MSR-2019-SoniN #stack overflow
Analyzing comment-induced updates on stack overflow (AS, SN), pp. 220–234.
MSR-2019-JinS #empirical #stack overflow #what
What edits are done on the highly answered questions in stack overflow?: an empirical study (XJ, FS), pp. 225–229.
MSR-2019-AbricCCGM #community #development #question #stack overflow
Can duplicate questions on stack overflow benefit the software development community? (DA, OEC, MC, KG, SM), pp. 230–234.
MSR-2019-ManesB #developer #git #how #question #stack overflow #what
How often and what StackOverflow posts do developers reference in their GitHub projects? (SSM, OB), pp. 235–239.
MSR-2019-NishiCD #stack overflow
Characterizing duplicate code snippets between stack overflow and tutorials (MAN, AC, KD), pp. 240–244.
MSR-2019-ImtiazRFW #challenge #static analysis
Challenges with responding to static analysis tool alerts (NI, AR, EF, LW), pp. 245–249.
MSR-2019-AhmadC #case study #stack overflow
Impact of stack overflow code snippets on software cohesion: a preliminary study (MA, MÓC), pp. 250–254.
MSR-2019-BandeiraMPM #analysis #stack overflow
We need to talk about microservices: an analysis from the discussions on StackOverflow (AB, CAM, MP, PHMM), pp. 255–259.
MSR-2019-BangashSCWHA #case study #developer #machine learning #ml #stack overflow #what
What do developers know about machine learning: a study of ML discussions on StackOverflow (AAB, HS, SAC, AWW, AH, KA0), pp. 260–264.
MSR-2019-AmannNNNM #detection
Investigating next steps in static API-misuse detection (SA, HAN, SN, TNN, MM), pp. 265–275.
MSR-2019-MontandonSV #framework #git #identification #library
Identifying experts in software libraries and frameworks among GitHub users (JEM, LLS, MTV), pp. 276–287.
MSR-2019-ScalabrinoBLLO #android #api #data-driven #detection #empirical
Data-driven solutions to detect API compatibility issues in Android: an empirical study (SS, GB, MLV, ML, RO), pp. 288–298.
MSR-2019-LiuLZFDQ #commit #generative #network #using
Generating commit messages from diffs using pointer-generator network (QL, ZL, HZ, HF, BD, YQ), pp. 299–309.
MSR-2019-AlqaimiTT #automation #documentation #generative #java
Automatically generating documentation for lambda expressions in Java (AA, PT, CT), pp. 310–320.
MSR-2019-WangPWZ #api #developer
Extracting API tips from developer question and answer websites (SW0, NP, YW, YZ), pp. 321–332.
MSR-2019-Soto-ValeroBHBB
The emergence of software diversity in maven central (CSV, AB, NH, OB, BB), pp. 333–343.
MSR-2019-BenelallamHSBB #dependence #graph #representation
The maven dependency graph: a temporal graph-based representation of maven central (AB, NH, CSV, BB, OB), pp. 344–348.
MSR-2019-0001PSTB #dependence #version control
Dependency versioning in the wild (JD0, DJP, JS, AT, KB), pp. 349–359.
MSR-2019-MatosFR #api #case study
Splitting APIs: an exploratory study of software unbundling (ASM, JBFF, LSR), pp. 360–370.
MSR-2019-LeSB #assessment #automation #concept
Automated software vulnerability assessment with concept drift (THML, BS, MAB), pp. 371–382.
MSR-2019-PontaPSBD #dataset #open source
A manually-curated dataset of fixes to vulnerabilities of open-source software (SEP, HP, AS, MB, CD), pp. 383–387.
MSR-2019-GaoKLBK #android #mining
Negative results on mining crypto-API usage rules in Android apps (JG, PK, LL0, TFB, JK), pp. 388–398.
MSR-2019-RaduN #dataset #debugging #non-functional
A dataset of non-functional bugs (AR, SN), pp. 399–403.
MSR-2019-WangSL0 #android #dataset #metadata #named #reliability #towards
RmvDroid: towards a reliable Android malware dataset with app metadata (HW, JS, HL, YG0), pp. 404–408.
MSR-2019-Zhu0 #email #empirical #multi #repository #version control
An empirical study of multiple names and email addresses in OSS version control repositories (JZ, JW0), pp. 409–420.
MSR-2019-MilewiczPR #open source
Characterizing the roles of contributors in open-source scientific software projects (RM, GP0, PR), pp. 421–432.
MSR-2019-GoteSS #git #mining #named #network #repository #scalability
git2net: mining time-stamped co-editing networks from large git repositories (CG, IS, FS), pp. 433–444.
MSR-2019-HabchiMR #android #question #smell
The rise of Android code smells: who is to blame? (SH, NM, RR), pp. 445–456.
MSR-2019-BleserNR #scala #smell
Assessing diffusion and perception of test smells in scala projects (JDB, DDN, CDR), pp. 457–467.
MSR-2019-MarkovtsevLMSB #algorithm #consistency #named #nondeterminism
STYLE-ANALYZER: fixing code style inconsistencies with interpretable unsupervised algorithms (VM, WL, HM, KS, EB), pp. 468–478.
MSR-2019-Mondal0R #case study #stack overflow
Can issues reported at stack overflow questions be reproduced?: an exploratory study (SM, MMR0, CKR), pp. 479–489.
MSR-2019-ChatterjeeDPAK #case study #mining #re-engineering #tool support
Exploratory study of slack Q&A chats as a mining source for software engineering tools (PC, KD, LLP, VA, NAK), pp. 490–501.
MSR-2019-HayashiHMK #development
Impacts of daylight saving time on software development (JH, YH, SM, SK), pp. 502–506.
MSR-2019-PimentelMBF #quality #scalability
A large-scale study about quality and reproducibility of jupyter notebooks (JFP, LM, VB, JF), pp. 507–517.
MSR-2019-PerezC #abstract syntax tree #clone detection #detection #learning #syntax
Cross-language clone detection by learning over abstract syntax trees (DP, SC), pp. 518–528.
MSR-2019-KampKP #java #named #semantics #set
SeSaMe: a data set of semantically similar Java methods (MK, PK, MP), pp. 529–533.
MSR-2019-YangC0 #behaviour #development #predict #source code #specification
Predicting co-changes between functionality specifications and source code in behavior driven development (AZHY, DAdC, YZ0), pp. 534–544.
MSR-2019-SchipperAD #research
Tracing back log data to its log statement: from research to practice (DS, MFA, AvD), pp. 545–549.
MSR-2019-MatsumotoHK #approach #hybrid
Beyond GumTree: a hybrid approach to generate edit scripts (JM, YH, SK), pp. 550–554.
MSR-2019-FunakiHS #slicing
The impact of systematic edits in history slicing (RF, SH, MS), pp. 555–559.
MSR-2019-Owhadi-KareshkN #scalability
Scalable software merging studies with MergAnser (MOK, SN), pp. 560–564.
MSR-2019-KottiS
Standing on shoulders or feet?: the usage of the MSR data papers (ZK, DS), pp. 565–576.
MSR-2019-BiswasIHR #dataset #python
Boa meets python: a boa dataset of data science software in python language (SB, MJI, YH, HR), pp. 577–581.
MSR-2019-RiganelliMMM #android #benchmark #debugging #metric
A benchmark of data loss bugs for Android apps (OR, MM, DM, LM), pp. 582–586.
MSR-2019-JoshiC #agile #dataset #git #named
RapidRelease: a dataset of projects and issues on github with rapid releases (SDJ, SC), pp. 587–591.
MSR-2019-ZeroualiCRGM #named
ConPan: a tool to analyze packages in software containers (AZ, VC, GR, JMGB, TM), pp. 592–596.
MSR-2019-ScocciaPPCK #android #empirical #open source
An empirical history of permission requests and mistakes in open source Android apps (GLS, AP, VP, BC, DEK), pp. 597–601.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.