Xavier Amatriain, Marc Torrens, Paul Resnick, Markus Zanker
Proceedings of the Fourth Conference on Recommender Systems
RecSys, 2010.
@proceedings{RecSys-2010, address = "Barcelona, Spain", editor = "Xavier Amatriain and Marc Torrens and Paul Resnick and Markus Zanker", isbn = "978-1-60558-906-0", publisher = "{ACM}", title = "{Proceedings of the Fourth Conference on Recommender Systems}", year = 2010, }
Contents (71 items)
- RecSys-2010-Shani #recommendation #tutorial
- Tutorial on evaluating recommender systems (GS), p. 1.
- RecSys-2010-Baeza-Yates #predict #query #recommendation
- Query intent prediction and recommendation (RABY), pp. 5–6.
- RecSys-2010-GuyJAMNNS #industrial #perspective #recommendation
- Will recommenders kill search?: recommender systems — an industry perspective (IG, AJ, PA, PM, PN, CN, HS), pp. 7–12.
- RecSys-2010-SandholmUAH #recommendation
- Global budgets for local recommendations (TS, HU, CA, BAH), pp. 13–20.
- RecSys-2010-DesarkarSM #collaboration #graph #predict #rating
- Aggregating preference graphs for collaborative rating prediction (MSD, SS, PM), pp. 21–28.
- RecSys-2010-CastagnosJP #recommendation
- Eye-tracking product recommenders’ usage (SC, NJ, PP), pp. 29–36.
- RecSys-2010-ResnickKHP #contest #named #question
- Contests: way forward or detour? (PR, JAK, AH, JP), pp. 37–38.
- RecSys-2010-CremonesiKT #algorithm #performance #recommendation
- Performance of recommender algorithms on top-n recommendation tasks (PC, YK, RT), pp. 39–46.
- RecSys-2010-AdomaviciusZ #algorithm #on the #recommendation
- On the stability of recommendation algorithms (GA, JZ), pp. 47–54.
- RecSys-2010-JamborW #collaboration #multi #optimisation
- Optimizing multiple objectives in collaborative filtering (TJ, JW), pp. 55–62.
- RecSys-2010-BollenKWG #comprehension #recommendation
- Understanding choice overload in recommender systems (DGFMB, BPK, MCW, MPG), pp. 63–70.
- RecSys-2010-PilaszyZT #dataset #feedback #matrix #performance
- Fast als-based matrix factorization for explicit and implicit feedback datasets (IP, DZ, DT), pp. 71–78.
- RecSys-2010-KaratzoglouABO #collaboration #multi #recommendation
- Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering (AK, XA, LB, NO), pp. 79–86.
- RecSys-2010-KhoshneshinS #collaboration
- Collaborative filtering via euclidean embedding (MK, WNS), pp. 87–94.
- RecSys-2010-LiuZXY #collaboration #online
- Online evolutionary collaborative filtering (NNL, MZ, EWX, QY), pp. 95–102.
- RecSys-2010-VasukiNLD #network #recommendation #using
- Affiliation recommendation using auxiliary networks (VV, NN, ZL, ISD), pp. 103–110.
- RecSys-2010-BerkovskyF #analysis #recommendation
- Group-based recipe recommendations: analysis of data aggregation strategies (SB, JF), pp. 111–118.
- RecSys-2010-BaltrunasMR #collaboration #rank #recommendation
- Group recommendations with rank aggregation and collaborative filtering (LB, TM, FR), pp. 119–126.
- RecSys-2010-LappasG #interactive #network #recommendation #social
- Interactive recommendations in social endorsement networks (TL, DG), pp. 127–134.
- RecSys-2010-JamaliE #matrix #network #recommendation #social #trust
- A matrix factorization technique with trust propagation for recommendation in social networks (MJ, ME), pp. 135–142.
- RecSys-2010-ZhaoZYZZF #recommendation #social #what
- Who is talking about what: social map-based recommendation for content-centric social websites (SZ, MXZ, QY, XZ, WZ, RF), pp. 143–150.
- RecSys-2010-XieLW #recommendation
- Breaking out of the box of recommendations: from items to packages (MX, LVSL, PTW), pp. 151–158.
- RecSys-2010-EkstrandKSBKR #automation #research
- Automatically building research reading lists (MDE, PK, JAS, JTB, JAK, JR), pp. 159–166.
- RecSys-2010-LipczakM #learning #performance #recommendation
- Learning in efficient tag recommendation (ML, EEM), pp. 167–174.
- RecSys-2010-BerkovskyFCB #algorithm #game studies #process #recommendation
- Recommender algorithms in activity motivating games (SB, JF, MC, DB), pp. 175–182.
- RecSys-2010-SymeonidisTM #network #predict #similarity #social #transitive
- Transitive node similarity for link prediction in social networks with positive and negative links (PS, ET, YM), pp. 183–190.
- RecSys-2010-BaglioniBBCFVP #lightweight #mobile #privacy #recommendation
- A lightweight privacy preserving SMS-based recommendation system for mobile users (EB, LB, LB, UMC, LF, AV, GP), pp. 191–198.
- RecSys-2010-HannonBS #collaboration #recommendation #twitter #using
- Recommending twitter users to follow using content and collaborative filtering approaches (JH, MB, BS), pp. 199–206.
- RecSys-2010-PizzatoRCKK #named #online #recommendation
- RECON: a reciprocal recommender for online dating (LASP, TR, TC, IK, JK), pp. 207–214.
- RecSys-2010-Servan-Schreiber #recommendation
- Recommendation analytics: the business view, and the business case (ESS), pp. 215–216.
- RecSys-2010-AydayF #online #recommendation
- A belief propagation based recommender system for online services (EA, FF), pp. 217–220.
- RecSys-2010-LeeB #collaboration #process #recommendation #self #using
- Using self-defined group activities for improvingrecommendations in collaborative tagging systems (DHL, PB), pp. 221–224.
- RecSys-2010-Burke #algorithm #recommendation
- Evaluating the dynamic properties of recommendation algorithms (RDB), pp. 225–228.
- RecSys-2010-KaragiannidisAZV #framework #named #recommendation
- Hydra: an open framework for virtual-fusion of recommendation filters (SK, SA, CZ, AV), pp. 229–232.
- RecSys-2010-GedikliJ #rating #recommendation
- Recommending based on rating frequencies (FG, DJ), pp. 233–236.
- RecSys-2010-CantadorBV #recommendation #social
- Content-based recommendation in social tagging systems (IC, AB, DV), pp. 237–240.
- RecSys-2010-WuGC #identification #multi
- Merging multiple criteria to identify suspicious reviews (GW, DG, PC), pp. 241–244.
- RecSys-2010-ImK #personalisation #recommendation
- Personalizing the settings for Cf-based recommender systems (II, BHK), pp. 245–248.
- RecSys-2010-ZhengWZLY #case study #empirical #recommendation #user study
- Do clicks measure recommendation relevancy?: an empirical user study (HZ, DW, QZ, HL, TY), pp. 249–252.
- RecSys-2010-BenchettaraKR #approach #collaboration #machine learning #predict #recommendation
- A supervised machine learning link prediction approach for academic collaboration recommendation (NB, RK, CR), pp. 253–256.
- RecSys-2010-GeDJ #recommendation
- Beyond accuracy: evaluating recommender systems by coverage and serendipity (MG, CDB, DJ), pp. 257–260.
- RecSys-2010-ZangerleGS #collaboration #information management #recommendation
- Recommending structure in collaborative semistructured information systems (EZ, WG, GS), pp. 261–264.
- RecSys-2010-DeryKRS #nondeterminism #recommendation
- Iterative voting under uncertainty for group recommender systems (LND, MK, LR, BS), pp. 265–268.
- RecSys-2010-ShiLH #collaboration #learning #matrix #rank
- List-wise learning to rank with matrix factorization for collaborative filtering (YS, ML, AH), pp. 269–272.
- RecSys-2010-KamishimaA #approach #collaboration #modelling
- Nantonac collaborative filtering: a model-based approach (TK, SA), pp. 273–276.
- RecSys-2010-FreyneBDG #network #recommendation #social
- Social networking feeds: recommending items of interest (JF, SB, EMD, WG), pp. 277–280.
- RecSys-2010-PessemierDDM #algorithm #collaboration #dependence #quality
- Time dependency of data quality for collaborative filtering algorithms (TDP, SD, TD, LM), pp. 281–284.
- RecSys-2010-HammerKA #named #recommendation
- MED-StyleR: METABO diabetes-lifestyle recommender (SH, JK, EA), pp. 285–288.
- RecSys-2010-JancsaryNT #personalisation #semantics #towards
- Towards context-aware personalization and a broad perspective on the semantics of news articles (JJ, FN, HT), pp. 289–292.
- RecSys-2010-DavidsonLLNVGGHLLS #recommendation #video
- The YouTube video recommendation system (JD, BL, JL, PN, TVV, UG, SG, YH, ML, BL, DS), pp. 293–296.
- RecSys-2010-MarxHM #algorithm #comprehension #hybrid #recommendation
- Increasing consumers’ understanding of recommender results: a preference-based hybrid algorithm with strong explanatory power (PM, THT, AM), pp. 297–300.
- RecSys-2010-DalyGM #network #recommendation #social
- The network effects of recommending social connections (EMD, WG, DRM), pp. 301–304.
- RecSys-2010-EsparzaOS #on the #realtime #recommendation #web
- On the real-time web as a source of recommendation knowledge (SGE, MPO, BS), pp. 305–308.
- RecSys-2010-Diaz-AvilesGSN #on the fly
- LDA for on-the-fly auto tagging (EDA, MG, AS, WN), pp. 309–312.
- RecSys-2010-Balakrishnan #on-demand #recommendation
- On-demand set-based recommendations (SB), pp. 313–316.
- RecSys-2010-JawaheerSK #feedback #music #online #recommendation
- Characterisation of explicit feedback in an online music recommendation service (GJ, MS, PK), pp. 317–320.
- RecSys-2010-Gutschmidt #approach #online #segmentation
- An approach to situational market segmentation on on-line newspapers based on current tasks (AG), pp. 321–324.
- RecSys-2010-KhoshneshinS10a #clustering #collaboration #incremental
- Incremental collaborative filtering via evolutionary co-clustering (MK, WNS), pp. 325–328.
- RecSys-2010-AlbanesedMPP #modelling #problem #recommendation #social
- Modeling recommendation as a social choice problem (MA, Ad, VM, FP, AP), pp. 329–332.
- RecSys-2010-FarrellRDDD #navigation #social #web
- Social navigation for the spoken web (RGF, NR, RD, CMD, KAD), pp. 333–336.
- RecSys-2010-MayerMSJ #predict #social
- Common attributes in an unusual context: predicting the desirability of a social match (JMM, SM, RPS, QJ), pp. 337–340.
- RecSys-2010-MelloAZ #impact analysis #learning #rating
- Active learning driven by rating impact analysis (CERdM, MAA, GZ), pp. 341–344.
- RecSys-2010-MoldvayBFS #clustering #graph #named #recommendation #semantics #social
- Tagmantic: a social recommender service based on semantic tag graphs and tag clusters (JM, IB, AF, MS), pp. 345–346.
- RecSys-2010-BarrioR #collaboration #recommendation
- Geolocated movie recommendations based on expert collaborative filtering (JBB, XAR), pp. 347–348.
- RecSys-2010-CebrianPVA #music #recommendation
- Music recommendations with temporal context awareness (TC, MP, PV, XA), pp. 349–352.
- RecSys-2010-PizzatoRCKYK #online #recommendation
- Reciprocal recommender system for online dating (LASP, TR, TC, IK, KY, JK), pp. 353–354.
- RecSys-2010-PronkBKP #video #web
- Integrating broadcast and web video content into personal tv channels (VP, MB, JHMK, AP), pp. 355–356.
- RecSys-2010-Hu #design #recommendation
- Design and user issues in personality-based recommender systems (RH), pp. 357–360.
- RecSys-2010-Musto #modelling #recommendation
- Enhanced vector space models for content-based recommender systems (CM), pp. 361–364.
- RecSys-2010-Said #hybrid #identification #recommendation
- Identifying and utilizing contextual data in hybrid recommender systems (AS), pp. 365–368.
- RecSys-2010-Schirru #enterprise #platform #recommendation #social #social media #topic
- Topic-based recommendations in enterprise social media sharing platforms (RS), pp. 369–372.
51 ×#recommendation
15 ×#collaboration
12 ×#social
6 ×#algorithm
6 ×#network
6 ×#online
5 ×#named
5 ×#predict
3 ×#approach
3 ×#learning
15 ×#collaboration
12 ×#social
6 ×#algorithm
6 ×#network
6 ×#online
5 ×#named
5 ×#predict
3 ×#approach
3 ×#learning