Proceedings of the Fourth Conference on Recommender Systems
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Xavier Amatriain, Marc Torrens, Paul Resnick, Markus Zanker
Proceedings of the Fourth Conference on Recommender Systems
RecSys, 2010.

KER
DBLP
Scholar
Full names Links ISxN
@proceedings{RecSys-2010,
	address       = "Barcelona, Spain",
	editor        = "Xavier Amatriain and Marc Torrens and Paul Resnick and Markus Zanker",
	isbn          = "978-1-60558-906-0",
	publisher     = "{ACM}",
	title         = "{Proceedings of the Fourth Conference on Recommender Systems}",
	year          = 2010,
}

Contents (71 items)

RecSys-2010-Shani #recommendation #tutorial
Tutorial on evaluating recommender systems (GS), p. 1.
RecSys-2010-Baeza-Yates #predict #query #recommendation
Query intent prediction and recommendation (RABY), pp. 5–6.
RecSys-2010-GuyJAMNNS #industrial #perspective #recommendation
Will recommenders kill search?: recommender systems — an industry perspective (IG, AJ, PA, PM, PN, CN, HS), pp. 7–12.
RecSys-2010-SandholmUAH #recommendation
Global budgets for local recommendations (TS, HU, CA, BAH), pp. 13–20.
RecSys-2010-DesarkarSM #collaboration #graph #predict #rating
Aggregating preference graphs for collaborative rating prediction (MSD, SS, PM), pp. 21–28.
RecSys-2010-CastagnosJP #recommendation
Eye-tracking product recommenders’ usage (SC, NJ, PP), pp. 29–36.
RecSys-2010-ResnickKHP #contest #named #question
Contests: way forward or detour? (PR, JAK, AH, JP), pp. 37–38.
RecSys-2010-CremonesiKT #algorithm #performance #recommendation
Performance of recommender algorithms on top-n recommendation tasks (PC, YK, RT), pp. 39–46.
RecSys-2010-AdomaviciusZ #algorithm #on the #recommendation
On the stability of recommendation algorithms (GA, JZ), pp. 47–54.
RecSys-2010-JamborW #collaboration #multi #optimisation
Optimizing multiple objectives in collaborative filtering (TJ, JW), pp. 55–62.
RecSys-2010-BollenKWG #comprehension #recommendation
Understanding choice overload in recommender systems (DGFMB, BPK, MCW, MPG), pp. 63–70.
RecSys-2010-PilaszyZT #dataset #feedback #matrix #performance
Fast als-based matrix factorization for explicit and implicit feedback datasets (IP, DZ, DT), pp. 71–78.
RecSys-2010-KaratzoglouABO #collaboration #multi #recommendation
Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering (AK, XA, LB, NO), pp. 79–86.
RecSys-2010-KhoshneshinS #collaboration
Collaborative filtering via euclidean embedding (MK, WNS), pp. 87–94.
RecSys-2010-LiuZXY #collaboration #online
Online evolutionary collaborative filtering (NNL, MZ, EWX, QY), pp. 95–102.
RecSys-2010-VasukiNLD #network #recommendation #using
Affiliation recommendation using auxiliary networks (VV, NN, ZL, ISD), pp. 103–110.
RecSys-2010-BerkovskyF #analysis #recommendation
Group-based recipe recommendations: analysis of data aggregation strategies (SB, JF), pp. 111–118.
RecSys-2010-BaltrunasMR #collaboration #rank #recommendation
Group recommendations with rank aggregation and collaborative filtering (LB, TM, FR), pp. 119–126.
RecSys-2010-LappasG #interactive #network #recommendation #social
Interactive recommendations in social endorsement networks (TL, DG), pp. 127–134.
RecSys-2010-JamaliE #matrix #network #recommendation #social #trust
A matrix factorization technique with trust propagation for recommendation in social networks (MJ, ME), pp. 135–142.
RecSys-2010-ZhaoZYZZF #recommendation #social #what
Who is talking about what: social map-based recommendation for content-centric social websites (SZ, MXZ, QY, XZ, WZ, RF), pp. 143–150.
RecSys-2010-XieLW #recommendation
Breaking out of the box of recommendations: from items to packages (MX, LVSL, PTW), pp. 151–158.
RecSys-2010-EkstrandKSBKR #automation #research
Automatically building research reading lists (MDE, PK, JAS, JTB, JAK, JR), pp. 159–166.
RecSys-2010-LipczakM #learning #performance #recommendation
Learning in efficient tag recommendation (ML, EEM), pp. 167–174.
RecSys-2010-BerkovskyFCB #algorithm #game studies #process #recommendation
Recommender algorithms in activity motivating games (SB, JF, MC, DB), pp. 175–182.
RecSys-2010-SymeonidisTM #network #predict #similarity #social #transitive
Transitive node similarity for link prediction in social networks with positive and negative links (PS, ET, YM), pp. 183–190.
RecSys-2010-BaglioniBBCFVP #lightweight #mobile #privacy #recommendation
A lightweight privacy preserving SMS-based recommendation system for mobile users (EB, LB, LB, UMC, LF, AV, GP), pp. 191–198.
RecSys-2010-HannonBS #collaboration #recommendation #twitter #using
Recommending twitter users to follow using content and collaborative filtering approaches (JH, MB, BS), pp. 199–206.
RecSys-2010-PizzatoRCKK #named #online #recommendation
RECON: a reciprocal recommender for online dating (LASP, TR, TC, IK, JK), pp. 207–214.
RecSys-2010-Servan-Schreiber #recommendation
Recommendation analytics: the business view, and the business case (ESS), pp. 215–216.
RecSys-2010-AydayF #online #recommendation
A belief propagation based recommender system for online services (EA, FF), pp. 217–220.
RecSys-2010-LeeB #collaboration #process #recommendation #self #using
Using self-defined group activities for improvingrecommendations in collaborative tagging systems (DHL, PB), pp. 221–224.
RecSys-2010-Burke #algorithm #recommendation
Evaluating the dynamic properties of recommendation algorithms (RDB), pp. 225–228.
RecSys-2010-KaragiannidisAZV #framework #named #recommendation
Hydra: an open framework for virtual-fusion of recommendation filters (SK, SA, CZ, AV), pp. 229–232.
RecSys-2010-GedikliJ #rating #recommendation
Recommending based on rating frequencies (FG, DJ), pp. 233–236.
RecSys-2010-CantadorBV #recommendation #social
Content-based recommendation in social tagging systems (IC, AB, DV), pp. 237–240.
RecSys-2010-WuGC #identification #multi
Merging multiple criteria to identify suspicious reviews (GW, DG, PC), pp. 241–244.
RecSys-2010-ImK #personalisation #recommendation
Personalizing the settings for Cf-based recommender systems (II, BHK), pp. 245–248.
RecSys-2010-ZhengWZLY #case study #empirical #recommendation #user study
Do clicks measure recommendation relevancy?: an empirical user study (HZ, DW, QZ, HL, TY), pp. 249–252.
RecSys-2010-BenchettaraKR #approach #collaboration #machine learning #predict #recommendation
A supervised machine learning link prediction approach for academic collaboration recommendation (NB, RK, CR), pp. 253–256.
RecSys-2010-GeDJ #recommendation
Beyond accuracy: evaluating recommender systems by coverage and serendipity (MG, CDB, DJ), pp. 257–260.
RecSys-2010-ZangerleGS #collaboration #information management #recommendation
Recommending structure in collaborative semistructured information systems (EZ, WG, GS), pp. 261–264.
RecSys-2010-DeryKRS #nondeterminism #recommendation
Iterative voting under uncertainty for group recommender systems (LND, MK, LR, BS), pp. 265–268.
RecSys-2010-ShiLH #collaboration #learning #matrix #rank
List-wise learning to rank with matrix factorization for collaborative filtering (YS, ML, AH), pp. 269–272.
RecSys-2010-KamishimaA #approach #collaboration #modelling
Nantonac collaborative filtering: a model-based approach (TK, SA), pp. 273–276.
RecSys-2010-FreyneBDG #network #recommendation #social
Social networking feeds: recommending items of interest (JF, SB, EMD, WG), pp. 277–280.
RecSys-2010-PessemierDDM #algorithm #collaboration #dependence #quality
Time dependency of data quality for collaborative filtering algorithms (TDP, SD, TD, LM), pp. 281–284.
RecSys-2010-HammerKA #named #recommendation
MED-StyleR: METABO diabetes-lifestyle recommender (SH, JK, EA), pp. 285–288.
RecSys-2010-JancsaryNT #personalisation #semantics #towards
Towards context-aware personalization and a broad perspective on the semantics of news articles (JJ, FN, HT), pp. 289–292.
RecSys-2010-DavidsonLLNVGGHLLS #recommendation #video
The YouTube video recommendation system (JD, BL, JL, PN, TVV, UG, SG, YH, ML, BL, DS), pp. 293–296.
RecSys-2010-MarxHM #algorithm #comprehension #hybrid #recommendation
Increasing consumers’ understanding of recommender results: a preference-based hybrid algorithm with strong explanatory power (PM, THT, AM), pp. 297–300.
RecSys-2010-DalyGM #network #recommendation #social
The network effects of recommending social connections (EMD, WG, DRM), pp. 301–304.
RecSys-2010-EsparzaOS #on the #realtime #recommendation #web
On the real-time web as a source of recommendation knowledge (SGE, MPO, BS), pp. 305–308.
RecSys-2010-Diaz-AvilesGSN #on the fly
LDA for on-the-fly auto tagging (EDA, MG, AS, WN), pp. 309–312.
RecSys-2010-Balakrishnan #on-demand #recommendation
On-demand set-based recommendations (SB), pp. 313–316.
RecSys-2010-JawaheerSK #feedback #music #online #recommendation
Characterisation of explicit feedback in an online music recommendation service (GJ, MS, PK), pp. 317–320.
RecSys-2010-Gutschmidt #approach #online #segmentation
An approach to situational market segmentation on on-line newspapers based on current tasks (AG), pp. 321–324.
RecSys-2010-KhoshneshinS10a #clustering #collaboration #incremental
Incremental collaborative filtering via evolutionary co-clustering (MK, WNS), pp. 325–328.
RecSys-2010-AlbanesedMPP #modelling #problem #recommendation #social
Modeling recommendation as a social choice problem (MA, Ad, VM, FP, AP), pp. 329–332.
RecSys-2010-FarrellRDDD #navigation #social #web
Social navigation for the spoken web (RGF, NR, RD, CMD, KAD), pp. 333–336.
RecSys-2010-MayerMSJ #predict #social
Common attributes in an unusual context: predicting the desirability of a social match (JMM, SM, RPS, QJ), pp. 337–340.
RecSys-2010-MelloAZ #impact analysis #learning #rating
Active learning driven by rating impact analysis (CERdM, MAA, GZ), pp. 341–344.
RecSys-2010-MoldvayBFS #clustering #graph #named #recommendation #semantics #social
Tagmantic: a social recommender service based on semantic tag graphs and tag clusters (JM, IB, AF, MS), pp. 345–346.
RecSys-2010-BarrioR #collaboration #recommendation
Geolocated movie recommendations based on expert collaborative filtering (JBB, XAR), pp. 347–348.
RecSys-2010-CebrianPVA #music #recommendation
Music recommendations with temporal context awareness (TC, MP, PV, XA), pp. 349–352.
RecSys-2010-PizzatoRCKYK #online #recommendation
Reciprocal recommender system for online dating (LASP, TR, TC, IK, KY, JK), pp. 353–354.
RecSys-2010-PronkBKP #video #web
Integrating broadcast and web video content into personal tv channels (VP, MB, JHMK, AP), pp. 355–356.
RecSys-2010-Hu #design #recommendation
Design and user issues in personality-based recommender systems (RH), pp. 357–360.
RecSys-2010-Musto #modelling #recommendation
Enhanced vector space models for content-based recommender systems (CM), pp. 361–364.
RecSys-2010-Said #hybrid #identification #recommendation
Identifying and utilizing contextual data in hybrid recommender systems (AS), pp. 365–368.
RecSys-2010-Schirru #enterprise #platform #recommendation #social #social media #topic
Topic-based recommendations in enterprise social media sharing platforms (RS), pp. 369–372.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.