Travelled to:
1 × Australia
1 × Austria
1 × Brazil
1 × France
1 × Germany
1 × Israel
1 × The Netherlands
1 × United Kingdom
3 × Canada
3 × China
6 × USA
Collaborated with:
M.R.Lyu H.Ma H.Deng H.Yang H.Yang B.Li Z.Xu R.Jin T.Lau X.Xin K.Huang R.Rahimi A.Shakery T.Zhao J.J.McAuley G.Ling P.Garg X.Yu Z.Lin W.Wei J.H.M.Lee P.Fung W.Lee C.Gao J.Zeng D.L.0001 S.Zhu C.Liu F.Y.Duan L.Chan L.Xu J.Han C.Cheng F.Xia T.Zhang R.Agrawal H.Huang W.Zheng T.Xie X.Si E.Y.Chang J.Ye C.Lin X.X.0001
Talks about:
learn (9) recommend (6) social (6) question (5) collabor (4) inform (4) factor (4) model (4) communiti (3) retriev (3)
Person: Irwin King
DBLP: King:Irwin
Facilitated 1 volumes:
Contributed to:
Wrote 39 papers:
- CIKM-2014-RahimiSK #analysis #axiom #information retrieval
- Axiomatic Analysis of Cross-Language Information Retrieval (RR, AS, IK), pp. 1875–1878.
- CIKM-2014-ZhaoMK #collaboration #personalisation #ranking #social
- Leveraging Social Connections to Improve Personalized Ranking for Collaborative Filtering (TZ, JJM, IK), pp. 261–270.
- RecSys-2014-ChengXZKL
- Gradient boosting factorization machines (CC, FX, TZ, IK, MRL), pp. 265–272.
- RecSys-2014-LingLK #approach #recommendation
- Ratings meet reviews, a combined approach to recommend (GL, MRL, IK), pp. 105–112.
- CIKM-2012-GargKL #network #rating #social
- Information propagation in social rating networks (PG, IK, MRL), pp. 2279–2282.
- CIKM-2012-XinKALH #design #modelling
- Do ads compete or collaborate?: designing click models with full relationship incorporated (XX, IK, RA, MRL, HH), pp. 1839–1843.
- ASE-2011-ZhengMLXK #mining #testing #web
- Mining test oracles of web search engines (WZ, HM, MRL, TX, IK), pp. 408–411.
- CIKM-2011-LiKL #community
- Question routing in community question answering: putting category in its place (BL, IK, MRL), pp. 2041–2044.
- CIKM-2011-LiSLKC #identification #twitter
- Question identification on twitter (BL, XS, MRL, IK, EYC), pp. 2477–2480.
- CIKM-2011-YangZKL #how #learning #question #why
- Can irrelevant data help semi-supervised learning, why and how? (HY, SZ, IK, MRL), pp. 937–946.
- CIKM-2011-YuKL #approach #bidirectional #bottom-up #information management #top-down #towards
- Towards a top-down and bottom-up bidirectional approach to joint information extraction (XY, IK, MRL), pp. 847–856.
- SIGIR-2011-MaLKL #modelling #probability #recommendation #web
- Probabilistic factor models for web site recommendation (HM, CL, IK, MRL), pp. 265–274.
- CIKM-2010-LiK #community
- Routing questions to appropriate answerers in community question answering services (BL, IK), pp. 1585–1588.
- CIKM-2010-YangKL #feature model #learning #multi #online
- Online learning for multi-task feature selection (HY, IK, MRL), pp. 1693–1696.
- ICML-2010-XuJYKL #kernel #learning #multi #performance
- Simple and Efficient Multiple Kernel Learning by Group Lasso (ZX, RJ, HY, IK, MRL), pp. 1175–1182.
- ICML-2010-YangXKL #learning #online
- Online Learning for Group Lasso (HY, ZX, IK, MRL), pp. 1191–1198.
- CIKM-2009-DengKL #retrieval #using
- Enhancing expertise retrieval using community-aware strategies (HD, IK, MRL), pp. 1733–1736.
- CIKM-2009-LinLK #named #novel #similarity
- MatchSim: a novel neighbor-based similarity measure with maximum neighborhood matching (ZL, MRL, IK), pp. 1613–1616.
- CIKM-2009-MaYKL #collaboration #consistency #matrix #statistics
- Semi-nonnegative matrix factorization with global statistical consistency for collaborative filtering (HM, HY, IK, MRL), pp. 767–776.
- CIKM-2009-XinKDL #framework #multi #random #recommendation #social
- A social recommendation framework based on multi-scale continuous conditional random fields (XX, IK, HD, MRL), pp. 1247–1256.
- ICML-2009-XuJYLK #feature model
- Non-monotonic feature selection (ZX, RJ, JY, MRL, IK), pp. 1145–1152.
- KDD-2009-DengLK #algorithm #graph
- A generalized Co-HITS algorithm and its application to bipartite graphs (HD, MRL, IK), pp. 239–248.
- RecSys-2009-MaLK #learning #recommendation #trust
- Learning to recommend with trust and distrust relationships (HM, MRL, IK), pp. 189–196.
- SIGIR-2009-DengKL #graph #modelling #query #representation
- Entropy-biased models for query representation on the click graph (HD, IK, MRL), pp. 339–346.
- SIGIR-2009-MaKL #learning #recommendation #social #trust
- Learning to recommend with social trust ensemble (HM, IK, MRL), pp. 203–210.
- CIKM-2008-MaYKL #learning #query #semantics
- Learning latent semantic relations from clickthrough data for query suggestion (HM, HY, IK, MRL), pp. 709–718.
- CIKM-2008-MaYLK #mining #network #process #social #using
- Mining social networks using heat diffusion processes for marketing candidates selection (HM, HY, MRL, IK), pp. 233–242.
- CIKM-2008-MaYLK08a #matrix #named #probability #recommendation #social #using
- SoRec: social recommendation using probabilistic matrix factorization (HM, HY, MRL, IK), pp. 931–940.
- CIKM-2008-XuJHLK #categorisation
- Semi-supervised text categorization by active search (ZX, RJ, KH, MRL, IK), pp. 1517–1518.
- ICDAR-2007-WeiKL
- Bibliographic Attributes Extraction with Layer-upon-Layer Tagging (WW, IK, JHML), pp. 804–808.
- SIGIR-2007-MaKL #collaboration #effectiveness #predict
- Effective missing data prediction for collaborative filtering (HM, IK, MRL), pp. 39–46.
- SIGIR-2007-YangKL #named #web
- DiffusionRank: a possible penicillin for web spamming (HY, IK, MRL), pp. 431–438.
- ICML-2004-HuangYKL #classification #learning #scalability
- Learning large margin classifiers locally and globally (KH, HY, IK, MRL).
- MLDM-1999-KingL #clustering #information retrieval #learning
- Non-hierarchical Clustering with Rival Penalized Competitive Learning for Information Retrieval (IK, TKL), pp. 116–130.
- ICPR-1998-DuanKC0 #algorithm
- Intra-block algorithm for digital watermarking (FYD, IK, LWC, LX), pp. 1589–1591.
- ICPR-1996-FungLK #2d #detection #random
- Randomized generalized Hough transform for 2-D gray scale object detection (PFF, WSL, IK), pp. 511–515.
- JCDL-2012-DengHLK #modelling #network #ranking
- Modeling and exploiting heterogeneous bibliographic networks for expertise ranking (HD, JH, MRL, IK), pp. 71–80.
- ESEC-FSE-2018-GaoZ0LLK #named
- INFAR: insight extraction from app reviews (CG, JZ, DL0, CYL, MRL, IK), pp. 904–907.
- ASE-2019-GaoZX0LK #automation #generative #overview
- Automating App Review Response Generation (CG, JZ, XX0, DL0, MRL, IK), pp. 163–175.