Travelled to:
1 × Canada
1 × France
1 × Greece
2 × United Kingdom
6 × USA
Collaborated with:
W.Wang P.S.Yu S.Zhang J.Han W.Jin G.Cong A.K.H.Tung F.Pan S.Li M.Hu W.Su R.Chang A.Podgurski Y.Li J.Liu H.Yu R.R.Muntz J.Huan J.Prins H.Wang X.Xu M.J.Zaki
Talks about:
pattern (7) mine (6) cluster (4) graph (4) data (4) subgraph (3) larg (3) find (3) approach (2) dataset (2)
Person: Jiong Yang
DBLP: Yang:Jiong
Contributed to:
Wrote 17 papers:
- CIKM-2011-YangZJ #graph #multi #named #query
- DELTA: indexing and querying multi-labeled graphs (JY, SZ, WJ), pp. 1765–1774.
- CIKM-2010-ZhangLY #graph #named
- SUMMA: subgraph matching in massive graphs (SZ, SL, JY), pp. 1285–1288.
- VLDB-2010-ZhangYJ #approximate #graph #named #scalability
- SAPPER: Subgraph Indexing and Approximate Matching in Large Graphs (SZ, JY, WJ), pp. 1185–1194.
- KDD-2008-HuYS #constraints #named #permutation #proximity
- Permu-pattern: discovery of mutable permutation patterns with proximity constraint (MH, JY, WS), pp. 318–326.
- ISSTA-2007-ChangPY #approach #what
- Finding what’s not there: a new approach to revealing neglected conditions in software (RYC, AP, JY), pp. 163–173.
- KDD-2004-HuanWPY #database #graph #mining #named
- SPIN: mining maximal frequent subgraphs from graph databases (JH, WW, JP, JY), pp. 581–586.
- KDD-2004-LiHY #clustering
- Clustering moving objects (YL, JH, JY), pp. 617–622.
- KDD-2004-LiuWY #clustering #framework
- A framework for ontology-driven subspace clustering (JL, WW, JY), pp. 623–628.
- SIGMOD-2004-CongXPTY #array #dataset #named
- FARMER: Finding Interesting Rule Groups in Microarray Datasets (GC, AKHT, XX, FP, JY), pp. 143–154.
- KDD-2003-PanCTYZ #biology #dataset #named
- Carpenter: finding closed patterns in long biological datasets (FP, GC, AKHT, JY, MJZ), pp. 637–642.
- KDD-2003-YuYH #clustering #scalability #set #using
- Classifying large data sets using SVMs with hierarchical clusters (HY, JY, JH), pp. 306–315.
- SIGMOD-2002-WangWYY #clustering #scalability #set #similarity
- Clustering by pattern similarity in large data sets (HW, WW, JY, PSY), pp. 394–405.
- SIGMOD-2002-YangWYH #mining
- Mining long sequential patterns in a noisy environment (JY, WW, PSY, JH), pp. 406–417.
- KDD-2001-YangWY #mining #named
- Infominer: mining surprising periodic patterns (JY, WW, PSY), pp. 395–400.
- KDD-2000-WangYY #mining #performance
- Efficient mining of weighted association rules (WAR) (WW, JY, PSY), pp. 270–274.
- KDD-2000-YangWY #mining
- Mining asynchronous periodic patterns in time series data (JY, WW, PSY), pp. 275–279.
- VLDB-1997-WangYM #approach #data mining #grid #mining #named #statistics
- STING: A Statistical Information Grid Approach to Spatial Data Mining (WW, JY, RRM), pp. 186–195.