Travelled to:
1 × Australia
1 × Austria
1 × China
1 × Finland
1 × France
1 × Germany
1 × Greece
1 × Korea
1 × Norway
11 × USA
2 × Canada
Collaborated with:
Z.Zhang K.Tan B.C.Ooi G.Cong J.Zhou F.Zhao N.Koudas X.Xu C.Li N.Wang D.Papadias B.T.Dai W.Jin R.Yang P.Kalnis J.Han H.Lu W.Wu W.S.Ng G.Das S.Parthasarathy S.Wang C.Li X.Wang F.Pan J.Yang G.Chen M.Lu L.Ji Y.C.Tay X.Ding Y.Zheng Z.Bao L.Shou D.Agrawal J.Zhang X.Zhang B.Cui C.Zhang Z.Zhao J.Xu G.Yu R.Cheng N.Sarkas Q.H.Vu B.Yu G.Li K.R.Sollins M.Ester R.Vernica R.Zhang L.Jin Q.Jing L.Feng Y.Yang R.Cai Z.Zeng J.Wang J.Feng L.Zhou C.Y.Chan H.V.Jagadish X.Guo H.Lu M.J.Zaki Q.Hu Q.Liu S.Goyal J.Yang C.Liu S.Ying D.Zhang M.Zhang
Talks about:
data (8) search (7) mine (7) base (6) similar (5) skylin (5) probabilist (4) databas (4) find (4) transact (3)
Person: Anthony K. H. Tung
DBLP: Tung:Anthony_K=_H=
Contributed to:
Wrote 42 papers:
- SIGMOD-2015-HuLWTGY #automation #documentation #named #social #social media #using
- DocRicher: An Automatic Annotation System for Text Documents Using Social Media (QH, QL, XW, AKHT, SG, JY), pp. 901–906.
- SIGMOD-2015-ZhouT #named #predict
- SMiLer: A Semi-Lazy Time Series Prediction System for Sensors (JZ, AKHT), pp. 1871–1886.
- VLDB-2014-WangDTZ13 #approximate #effectiveness #n-gram #performance #sequence
- Efficient and Effective KNN Sequence Search with Approximate n-grams (XW, XD, AKHT, ZZ), pp. 1–12.
- VLDB-2014-ZhengBST #fuzzy #named
- MESA: A Map Service to Support Fuzzy Type-ahead Search over Geo-Textual Data (YZ, ZB, LS, AKHT), pp. 1545–1548.
- KDD-2013-ZhouTWN #approach #predict #probability
- A “semi-lazy” approach to probabilistic path prediction (JZ, AKHT, WW, WSN), pp. 748–756.
- VLDB-2013-ZhaoT12 #analysis #network #scalability #social #visual notation
- Large Scale Cohesive Subgraphs Discovery for Social Network Visual Analysis (FZ, AKHT), pp. 85–96.
- VLDB-2013-ZhouTWN #2d #learning #named #predict #probability
- R2-D2: a System to Support Probabilistic Path Prediction in Dynamic Environments via “Semi-Lazy” Learning (JZ, AKHT, WW, WSN), pp. 1366–1369.
- SIGMOD-2011-ChenLLOYTZZ
- A cross-service travel engine for trip planning (GC, CL, ML, BCO, SY, AKHT, DZ, MZ), pp. 1251–1254.
- SIGMOD-2011-LuADT #named #probability #query
- Schema-as-you-go: on probabilistic tagging and querying of wide tables (ML, DA, BTD, AKHT), pp. 181–192.
- VLDB-2011-WangZTT10 #graph #on the
- On Triangulation-based Dense Neighborhood Graphs Discovery (NW, JZ, KLT, AKHT), pp. 58–68.
- VLDB-2011-ZhaoZTC #database #keyword #named
- BROAD: Diversified Keyword Search in Databases (FZ, XZ, AKHT, GC), pp. 1355–1358.
- SIGMOD-2010-CuiTZZ #multi #social #social media
- Multiple feature fusion for social media applications (BC, AKHT, CZ, ZZ), pp. 435–446.
- SIGMOD-2010-ZhaoDTT #approach #elicitation #order
- Call to order: a hierarchical browsing approach to eliciting users’ preference (FZ, GD, KLT, AKHT), pp. 27–38.
- VLDB-2010-XuZTY #data-driven #database #distance #effectiveness #performance #probability #similarity
- Efficient and Effective Similarity Search over Probabilistic Data based on Earth Mover’s Distance (JX, ZZ, AKHT, GY), pp. 758–769.
- SIGMOD-2009-ZhangCPT #communication #maintenance
- Minimizing the communication cost for continuous skyline maintenance (ZZ, RC, DP, AKHT), pp. 495–508.
- SIGMOD-2009-ZhangYCPT #estimation #kernel
- Kernel-based skyline cardinality estimation (ZZ, YY, RC, DP, AKHT), pp. 509–522.
- VLDB-2009-ZengTWFZ #approximate #distance #edit distance #graph
- Comparing Stars: On Approximating Graph Edit Distance (ZZ, AKHT, JW, JF, LZ), pp. 25–36.
- VLDB-2009-ZhangOPT #similarity #towards
- Similarity Search on Bregman Divergence: Towards Non-Metric Indexing (ZZ, BCO, SP, AKHT), pp. 13–24.
- ICML-2008-ZhangDT #algorithm
- Estimating local optimums in EM algorithm over Gaussian mixture model (ZZ, BTD, AKHT), pp. 1240–1247.
- SIGMOD-2008-SarkasDKT #category theory #streaming
- Categorical skylines for streaming data (NS, GD, NK, AKHT), pp. 239–250.
- SIGMOD-2008-VuOPT #database #graph #keyword
- A graph method for keyword-based selection of the top-K databases (QHV, BCO, DP, AKHT), pp. 915–926.
- SIGMOD-2008-WangPTT #mining #named #visualisation
- CSV: visualizing and mining cohesive subgraphs (NW, SP, KLT, AKHT), pp. 445–458.
- SIGMOD-2007-YuLST #database #effectiveness #keyword #relational
- Effective keyword-based selection of relational databases (BY, GL, KRS, AKHT), pp. 139–150.
- VLDB-2007-LiTJE #on the
- On Dominating Your Neighborhood Profitably (CL, AKHT, WJ, ME), pp. 818–829.
- SIGMOD-2006-ChanJTTZ
- Finding k-dominant skylines in high dimensional space (CYC, HVJ, KLT, AKHT, ZZ), pp. 503–514.
- SIGMOD-2006-LiOTW #analysis #named
- DADA: a data cube for dominant relationship analysis (CL, BCO, AKHT, SW), pp. 659–670.
- VLDB-2006-JiTT #3d #dataset #mining
- Mining Frequent Closed Cubes in 3D Datasets (LJ, KLT, AKHT), pp. 811–822.
- VLDB-2006-KoudasLTV #query
- Relaxing Join and Selection Queries (NK, CL, AKHT, RV), pp. 199–210.
- VLDB-2006-Tung0KO #approach #similarity
- Similarity Search: A Matching Based Approach (AKHT, RZ, NK, BCO), pp. 631–642.
- CIKM-2005-ZhangGLTW
- Discovering strong skyline points in high dimensional spaces (ZZ, XG, HL, AKHT, NW), pp. 247–248.
- SIGMOD-2005-CongTTX #mining
- Mining Top-k Covering Rule Groups for Gene Expression Data (GC, KLT, AKHT, XX), pp. 670–681.
- SIGMOD-2005-TungXO #clustering #correlation #named #visualisation
- CURLER: Finding and Visualizing Nonlinear Correlated Clusters (AKHT, XX, BCO), pp. 467–478.
- SIGMOD-2005-YangKT #evaluation #similarity
- Similarity Evaluation on Tree-structured Data (RY, PK, AKHT), pp. 754–765.
- VLDB-2005-JinKLT #approximate #retrieval
- Indexing Mixed Types for Approximate Retrieval (LJ, NK, CL, AKHT), pp. 793–804.
- CIKM-2004-JingYKT #locality #performance #similarity #transaction
- Localized signature table: fast similarity search on transaction data (QJ, RY, PK, AKHT), pp. 314–323.
- KDD-2004-LiCTW #incremental #maintenance
- Incremental maintenance of quotient cube for median (CL, GC, AKHT, SW), pp. 226–235.
- SIGMOD-2004-CongXPTY #array #dataset #named
- FARMER: Finding Interesting Rule Groups in Microarray Datasets (GC, AKHT, XX, FP, JY), pp. 143–154.
- VLDB-2004-XuCOTH #analysis #mining #semantics
- Semantic Mining and Analysis of Gene Expression Data (XX, GC, BCO, KLT, AKHT), pp. 1261–1264.
- KDD-2003-PanCTYZ #biology #dataset #named
- Carpenter: finding closed patterns in long biological datasets (FP, GC, AKHT, JY, MJZ), pp. 637–642.
- KDD-2001-JinTH #database #mining #scalability
- Mining top-n local outliers in large databases (WJ, AKHT, JH), pp. 293–298.
- KDD-1999-TungLHF #mining #transaction
- Breaking the Barrier of Transactions: Mining Inter-Transaction Association Rules (AKHT, HL, JH, LF), pp. 297–301.
- CIKM-1998-TungTL #mining #named #online #optimisation #using
- BROOM: Buffer Replacement using Online Optimization by Mining (AKHT, YCT, HL), pp. 185–192.