Travelled to:
1 × Canada
1 × India
1 × United Kingdom
5 × USA
Collaborated with:
T.Li M.Ogihara Z.Wang N.D.E.Jerger C.Perng A.Beygelzimer F.Liang W.Peng Y.Wang L.Xiao Z.Pang K.Wang D.Thoenen G.Grabarnik J.L.Hellerstein L.Huang L.Shen W.Shi N.Xiao R.K.Sahoo A.J.Oliner I.Rish M.Gupta J.E.Moreira R.Vilalta A.Sivasubramaniam
Talks about:
cluster (4) algorithm (2) network (2) categor (2) effici (2) comput (2) manag (2) event (2) adapt (2) rout (2)
Person: Sheng Ma
DBLP: Ma:Sheng
Contributed to:
Wrote 11 papers:
- PDP-2014-WangXMPW #algorithm
- Selective Extension of Routing Algorithms Based on Turn Model (YW, LX, SM, ZP, KW), pp. 174–177.
- HPCA-2012-MaJW #communication #performance
- Supporting efficient collective communication in NoCs (SM, NDEJ, ZW), pp. 165–176.
- HPCA-2012-MaJW12a #adaptation #algorithm #design #performance
- Whole packet forwarding: Efficient design of fully adaptive routing algorithms for networks-on-chip (SM, NDEJ, ZW), pp. 467–478.
- HPCA-2010-HuangSWSXM #named #permutation
- SIF: Overcoming the limitations of SIMD devices via implicit permutation (LH, LS, ZW, WS, NX, SM), pp. 1–12.
- KDD-2005-LiLMP #framework #mining
- An integrated framework on mining logs files for computing system management (TL, FL, SM, WP), pp. 776–781.
- CIKM-2004-LiOM #clustering #multi #on the
- On combining multiple clusterings (TL, MO, SM), pp. 294–303.
- ICML-2004-LiMO #category theory #clustering
- Entropy-based criterion in categorical clustering (TL, SM, MO).
- SIGIR-2004-LiMO #adaptation #clustering #documentation
- Document clustering via adaptive subspace iteration (TL, SM, MO), pp. 218–225.
- KDD-2003-PerngTGMH #data-driven #network #validation
- Data-driven validation, completion and construction of event relationship networks (CSP, DT, GG, SM, JLH), pp. 729–734.
- KDD-2003-SahooORGMMVS #clustering #predict #scalability
- Critical event prediction for proactive management in large-scale computer clusters (RKS, AJO, IR, MG, JEM, SM, RV, AS), pp. 426–435.
- KDD-2001-BeygelzimerPM #category theory #dataset #performance #scalability #visualisation
- Fast ordering of large categorical datasets for better visualization (AB, CSP, SM), pp. 239–244.