Travelled to:
1 × China
1 × Cyprus
1 × France
1 × Germany
1 × Italy
1 × South Korea
1 × Spain
10 × USA
2 × Australia
2 × Canada
2 × Portugal
Collaborated with:
B.Pfahringer U.Rückert M.Seeland C.Helma H.Kaindl A.Karwath E.Frank L.D.Raedt A.Maunz S.Burkhardt J.Wicker M.Mayo J.Shao Z.Ahmadi A.Hapfelmeier J.Schmidt P.S.N.Diallo L.M.Afonso R.Kacsich C.Welsch A.Schalk E.Hoos C.Gröger B.Mitschang F.Buchwald B.Bringmann F.Neubarth H.Pirker G.Widmer N.Krauter B.Derstorff C.Stönner E.Bourtsoukidis T.Klüpfel J.Williams
Talks about:
learn (7) base (6) graph (5) search (4) mine (4) data (4) structur (3) regress (3) classif (3) multi (3)
Person: Stefan Kramer
DBLP: Kramer:Stefan
Contributed to:
Wrote 28 papers:
- KDD-2015-WickerKDSBKW0 #data mining #mining #smell
- Cinema Data Mining: The Smell of Fear (JW, NK, BD, CS, EB, TK, JW, SK), pp. 1295–1304.
- SAC-2015-BurkhardtK #classification #multi #on the
- On the spectrum between binary relevance and classifier chains in multi-label classification (SB, SK), pp. 885–892.
- SAC-2015-FrankM0
- Alternating model trees (EF, MM, SK), pp. 871–878.
- ICEIS-v2-2014-HoosGKM #analysis #framework #identification #mobile #process
- Improving Business Processes Through Mobile Apps — An Analysis Framework to Identify Value-added App Usage Scenarios (EH, CG, SK, BM), pp. 71–82.
- KDD-2014-ShaoAK #concept #data type #learning #prototype
- Prototype-based learning on concept-drifting data streams (JS, ZA, SK), pp. 412–421.
- SAC-2014-SeelandKK #clustering #graph
- Structural clustering of millions of molecular graphs (MS, AK, SK), pp. 121–128.
- SAC-2014-SeelandMKK #classification
- Extracting information from support vector machines for pattern-based classification (MS, AM, AK, SK), pp. 129–136.
- SAC-2013-HapfelmeierSK #dataset #incremental #linear #performance
- Incremental linear model trees on massive datasets: keep it simple, keep it fast (AH, JS, SK), pp. 129–135.
- SAC-2013-SeelandKP #graph #kernel #learning
- Model selection based product kernel learning for regression on graphs (MS, SK, BP), pp. 136–143.
- KDD-2012-SeelandKK #clustering #graph #kernel #learning
- A structural cluster kernel for learning on graphs (MS, AK, SK), pp. 516–524.
- SAC-2012-SeelandBKP
- Maximum Common Subgraph based locally weighted regression (MS, FB, SK, BP), pp. 165–172.
- SAC-2012-WickerPK #classification #composition #matrix #multi #using
- Multi-label classification using boolean matrix decomposition (JW, BP, SK), pp. 179–186.
- KDD-2009-MaunzHK #graph #mining #refinement #scalability #using
- Large-scale graph mining using backbone refinement classes (AM, CH, SK), pp. 617–626.
- ICML-2006-RuckertK #approach #learning #statistics
- A statistical approach to rule learning (UR, SK), pp. 785–792.
- ICML-2004-FrankK #multi #problem
- Ensembles of nested dichotomies for multi-class problems (EF, SK).
- ICML-2004-RuckertK #bound #learning #towards
- Towards tight bounds for rule learning (UR, SK).
- SAC-2004-RuckertK #graph
- Frequent free tree discovery in graph data (UR, SK), pp. 564–570.
- ICML-2003-RuckertK #learning #probability
- Stochastic Local Search in k-Term DNF Learning (UR, SK), pp. 648–655.
- ICML-2002-BringmannKNPW
- Transformation-Based Regression (BB, SK, FN, HP, GW), pp. 59–66.
- ICML-2001-KramerR
- Feature Construction with Version Spaces for Biochemical Applications (SK, LDR), pp. 258–265.
- KDD-2001-KramerRH #mining
- Molecular feature mining in HIV data (SK, LDR, CH), pp. 136–143.
- HT-1999-KaindlKD #generative #taxonomy
- Semiautomatic Generation of Glossary Links: A Practical Solution (HK, SK, PSND), pp. 3–12.
- HT-1998-KaindlKA #web
- Combining Structure Search and Content Search for the World-Wide Web (HK, SK, LMA), pp. 217–224.
- ICRE-1998-KaindlKK #case study #functional #requirements #using
- A Case Study of Decomposing Functional Requirements Using Scenarios (HK, SK, RK), pp. 156–163.
- ICSE-1997-WelschSK #object-oriented #re-engineering
- Integrating Forward and Reverse Object-Oriented Software Engineering (CW, AS, SK), pp. 560–561.
- KDD-1997-KramerPH #machine learning #mining
- Mining for Causes of Cancer: Machine Learning Experiments at Various Levels of Detail (SK, BP, CH), pp. 223–226.
- KDD-1996-KramerP #performance
- Efficient Search for Strong Partial Determinations (SK, BP), pp. 371–374.
- KDD-1995-PfahringerK #evaluation
- Compression-Based Evaluation of Partial Determinations (BP, SK), pp. 234–239.