Travelled to:
1 × Germany
Collaborated with:
Liang Gao 0001 Long Wen L.Wang O.Hammami J.Brault Sican Cao Yuesheng Luo C.Lu Wenbin Song Mingzhu Lai Yanan Song Jitao Zhang Guokai Liu Z.Zhang Yiping Gao Meng Zhao Mi Xiao
Talks about:
diagnosi (3) network (3) learn (3) fault (3) base (3) unsupervis (2) algorithm (2) adversari (2) machin (2) optim (2)
Person: Xinyu Li
DBLP: Li:Xinyu
Contributed to:
Wrote 7 papers:
- DATE-2012-HammamiLB #named #network #verification
- NOCEVE: Network on chip emulation and verification environment (OH, XL, JMB), pp. 163–164.
- CASE-2018-CaoWLG #fault #generative #network
- Application of Generative Adversarial Networks for Intelligent Fault Diagnosis (SC, LW, XL, LG0), pp. 711–715.
- CASE-2019-LuoLLWG #multi #optimisation #problem #scheduling #using
- Green Job Shop Scheduling Problem with Machine at Different Speeds using a multi-objective grey wolf optimization algorithm* (YL, CL, XL, LW, LG0), pp. 573–578.
- CASE-2019-SongLLSG #clustering #fault #optimisation
- A New Spectral Clustering Based on Particle Swarm Optimization for Unsupervised Fault Diagnosis of Bearings (WS, ML, XL, YS, LG0), pp. 386–391.
- CASE-2019-ZhangLGWL #algorithm #classification #learning #taxonomy
- A Shapelet Dictionary Learning Algorithm for Time Series Classification (JZ, XL, LG0, LW, GL), pp. 299–304.
- CASE-2019-ZhangLWGG #fault #learning #network #using
- Fault Diagnosis Using Unsupervised Transfer Learning Based on Adversarial Network (ZZ, XL, LW, LG0, YG), pp. 305–310.
- CASE-2019-ZhaoLGWX #flexibility
- An improved Q-learning based rescheduling method for flexible job-shops with machine failures (MZ, XL, LG0, LW, MX), pp. 331–337.