BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
classif (14)
learn (10)
vector (7)
boost (6)
machin (6)

Stem multiclass$ (all stems)

55 papers:

CASECASE-2015-BaeM #markov #modelling #multi #random
Markovian modeling of multiclass deterministic flow lines with random arrivals: The case of a single-channel (SYB, JRM), pp. 649–654.
ICMLICML-2015-NarasimhanRS0 #algorithm #consistency #metric #multi #performance
Consistent Multiclass Algorithms for Complex Performance Measures (HN, HGR, AS, SA), pp. 2398–2407.
ICMLICML-c1-2014-ChenLL #multi #online #problem
Boosting with Online Binary Learners for the Multiclass Bandit Problem (STC, HTL, CJL), pp. 342–350.
ICMLICML-c2-2014-BeijbomSKV #multi
Guess-Averse Loss Functions For Cost-Sensitive Multiclass Boosting (OB, MJS, DJK, NV), pp. 586–594.
ICMLICML-c2-2014-KontorovichW #multi #nearest neighbour
Maximum Margin Multiclass Nearest Neighbors (AK, RW), pp. 892–900.
ICPRICPR-2014-BlondelFU #multi #scalability
Large-Scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex (MB, AF, NU), pp. 1289–1294.
CIKMCIKM-2013-ChengCLWAC #data type #learning #multi
Feedback-driven multiclass active learning for data streams (YC, ZC, LL, JW, AA, ANC), pp. 1311–1320.
ICMLICML-c3-2013-Agarwal #algorithm #multi #predict
Selective sampling algorithms for cost-sensitive multiclass prediction (AA), pp. 1220–1228.
ICMLICML-c3-2013-LongS #classification #consistency #multi
Consistency versus Realizable H-Consistency for Multiclass Classification (PML, RAS), pp. 801–809.
ICMLICML-c3-2013-PiresSG #bound #classification #multi
Cost-sensitive Multiclass Classification Risk Bounds (BAP, CS, MG), pp. 1391–1399.
MLDMMLDM-2013-EichelbergerS #classification #empirical #multi
An Empirical Study of Reducing Multiclass Classification Methodologies (RKE, VSS), pp. 505–519.
ICMLICML-2012-ReidWS #design #multi
The Convexity and Design of Composite Multiclass Losses (MDR, RCW, PS), p. 36.
ICPRICPR-2012-JiSL #multi
Multitask multiclass privileged information support vector machines (YJ, SS, YL), pp. 2323–2326.
ICPRICPR-2012-LiYLKZL #classification #multi #using
Multiclass boosting SVM using different texture features in HEp-2 cell staining pattern classification (KL, JY, ZL, XK, RZ, WL), pp. 170–173.
ICMLICML-2011-CrammerG #adaptation #classification #feedback #multi #using
Multiclass Classification with Bandit Feedback using Adaptive Regularization (KC, CG), pp. 273–280.
ICMLICML-2011-GaoK #multi
Multiclass Boosting with Hinge Loss based on Output Coding (TG, DK), pp. 569–576.
KDDKDD-2011-ValizadeganJW #learning #multi #predict
Learning to trade off between exploration and exploitation in multiclass bandit prediction (HV, RJ, SW), pp. 204–212.
ICMLICML-2010-TuL #classification #multi
One-sided Support Vector Regression for Multiclass Cost-sensitive Classification (HHT, HTL), pp. 1095–1102.
ICPRICPR-2010-HuangDF #classification #estimation #multi #random
Head Pose Estimation Based on Random Forests for Multiclass Classification (CH, XD, CF), pp. 934–937.
ICPRICPR-2010-LeeWC #classification #linear #multi
A Discriminative and Heteroscedastic Linear Feature Transformation for Multiclass Classification (HSL, HMW, BC), pp. 690–693.
ICPRICPR-2010-LuoN #classification #fault #learning #multi #problem
Employing Decoding of Specific Error Correcting Codes as a New Classification Criterion in Multiclass Learning Problems (YL, KN), pp. 4238–4241.
ICPRICPR-2010-NikitidisNP #incremental #multi
Incremental Training of Multiclass Support Vector Machines (SN, NN, IP), pp. 4267–4270.
ICPRICPR-2010-VerschaeR #detection #multi
Coarse-To-Fine Multiclass Nested Cascades for Object Detection (RV, JRdS), pp. 344–347.
SIGIRSIGIR-2009-AmbaiY #clustering #image #multi #ranking #set #visual notation
Multiclass VisualRank: image ranking method in clustered subsets based on visual features (MA, YY), pp. 732–733.
ICMLICML-2008-KakadeST #algorithm #multi #online #performance #predict
Efficient bandit algorithms for online multiclass prediction (SMK, SSS, AT), pp. 440–447.
ICMLICML-2008-ZhaoWZ #clustering #multi #performance
Efficient multiclass maximum margin clustering (BZ, FW, CZ), pp. 1248–1255.
ICPRICPR-2008-JradGB #constraints #learning #multi #performance
Supervised learning rule selection for multiclass decision with performance constraints (NJ, EGM, PB), pp. 1–4.
ICPRICPR-2008-LiZWH #analysis #clustering #multi
Multiclass spectral clustering based on discriminant analysis (XL, ZZ, YW, WH), pp. 1–4.
ICMLICML-2007-AmitFSU #classification #multi
Uncovering shared structures in multiclass classification (YA, MF, NS, SU), pp. 17–24.
ICMLICML-2007-AsharafMS #multi
Multiclass core vector machine (SA, MNM, SKS), pp. 41–48.
ICMLICML-2007-Azran #algorithm #learning #markov #multi #random
The rendezvous algorithm: multiclass semi-supervised learning with Markov random walks (AA), pp. 49–56.
ICMLICML-2007-BordesBGW #multi
Solving multiclass support vector machines with LaRank (AB, LB, PG, JW), pp. 89–96.
ICMLICML-2007-ZienO #kernel #learning #multi
Multiclass multiple kernel learning (AZ, CSO), pp. 1191–1198.
MLDMMLDM-2007-HulsmannF #algorithm #comparison #multi #novel #optimisation #parametricity
Comparison of a Novel Combined ECOC Strategy with Different Multiclass Algorithms Together with Parameter Optimization Methods (MH, CMF), pp. 17–31.
SACSAC-2007-LimaSC #estimation #metric #multi #network
Enhancing QoS metrics estimation in multiclass networks (SRL, PNMdS, PC), pp. 227–231.
ICMLICML-2006-FinkSSU #learning #multi #online
Online multiclass learning by interclass hypothesis sharing (MF, SSS, YS, SU), pp. 313–320.
ICMLICML-2006-GeJ #approximate #consistency #multi
A note on mixtures of experts for multiclass responses: approximation rate and Consistent Bayesian Inference (YG, WJ), pp. 329–335.
ICMLICML-2006-Li #clustering #multi
Multiclass boosting with repartitioning (LL), pp. 569–576.
ICMLICML-2006-TangM #multi
Multiclass reduced-set support vector machines (BT, DM), pp. 921–928.
ICPRICPR-v3-2006-KierA #classification #multi #predict
Predicting the benefit of sample size extension in multiclass k-NN classification (CK, TA), pp. 332–335.
ICPRICPR-v4-2006-LefaucheurN #classification #multi #robust #symmetry
Robust Multiclass Ensemble Classifiers via Symmetric Functions (PL, RN), pp. 136–139.
ICMLICML-2004-GaoWLC #approach #categorisation #learning #multi #robust
A MFoM learning approach to robust multiclass multi-label text categorization (SG, WW, CHL, TSC).
ICPRICPR-v2-2004-XuanDKHCW #feature model #multi #predict #profiling #robust
Robust Feature Selection by Weighted Fisher Criterion for Multiclass Prediction in Gene Expression Profiling (JX, YD, JIK, EPH, RC, YJW), pp. 291–294.
ICPRICPR-v3-2004-KoKB04a #learning #multi #problem
Improved N-Division Output Coding for Multiclass Learning Problems (JK, EK, HB), pp. 470–473.
ICPRICPR-v3-2004-SotocaSP #multi #naive bayes #set #using
Attribute Relevance in Multiclass Data Sets Using the Naive Bayes Rule (JMS, JSS, FP), pp. 426–429.
ICPRICPR-v4-2004-OuMF #classification #multi #network #using
Multiclass Pattern Classification Using Neural Networks (GO, YLM, LAF), pp. 585–588.
ICDARICDAR-2003-HamamuraMI #classification #multi
A Multiclass Classification Method Based on Multiple Pairwise Classifiers (TH, HM, BI), pp. 809–813.
SACSAC-2003-GiorgettiS #automation #bibliography #categorisation #multi
Multiclass Text Categorization for Automated Survey Coding (DG, FS), pp. 798–802.
ICMLICML-2002-SlonimBFT #feature model #markov #memory management #multi
Discriminative Feature Selection via Multiclass Variable Memory Markov Model (NS, GB, SF, NT), pp. 578–585.
ICPRICPR-v2-2002-TaxD #classification #multi #using
Using Two-Class Classifiers for Multiclass Classification (DMJT, RPWD), pp. 124–127.
KDDKDD-2002-ZadroznyE #classification #multi #probability
Transforming classifier scores into accurate multiclass probability estimates (BZ, CE), pp. 694–699.
ICMLICML-2000-AllweinSS #approach #classification #multi
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers (ELA, RES, YS), pp. 9–16.
ICPRICPR-v2-2000-LeeC #feature model #multi #optimisation #problem
Optimizing Feature Extraction for Multiclass Problems (CL, EC), pp. 2402–2405.
ICMLICML-1997-Schapire #learning #multi #problem #using
Using output codes to boost multiclass learning problems (RES), pp. 313–321.
VLDBVLDB-1993-BrownCL #memory management #multi
Managing Memory to Meet Multiclass Workload Response Time Goals (KPB, MJC, ML), pp. 328–341.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.