Proceedings of the 12th Conference on Computational Intelligence and Games
CIG-2016, 2016.
Contents (68 items)
- CIG-2016-Abdelkader #game studies
- Recovering visibility and dodging obstacles in pursuit-evasion games (AA), pp. 1–6.
- CIG-2016-AllartLPGN #analysis #design
- Design influence on player retention: A method based on time varying survival analysis (TA, GL, MP, AG, SN), pp. 1–8.
- CIG-2016-AversaSV #preprocessor
- Pruning and preprocessing methods for inventory-aware pathfinding (DA, SS, SV), pp. 1–8.
- CIG-2016-BeauB #automation #game studies #symmetry #video
- Automated game balancing of asymmetric video games (PB, SB), pp. 1–8.
- CIG-2016-BeyerAALNWRRPPV #game studies #process
- An integrated process for game balancing (MB, AA, AA, CL, FN, JW, MR, MR, NP, MP, VV), pp. 1–8.
- CIG-2016-Bursztein #learning #statistics #using
- I am a legend: Hacking hearthstone using statistical learning methods (EB), pp. 1–8.
- CIG-2016-CamilleriYD #design #platform
- Platformer level design for player believability (EC, GNY, AD), pp. 1–8.
- CIG-2016-CarvalhoCP #social
- Planning social actions through the others' eyes for emergent storytelling (DBC, EWGC, AP), pp. 1–8.
- CIG-2016-CazenaveLTT #game studies #learning #random #using
- Learning opening books in partially observable games: Using random seeds in Phantom Go (TC, JL0, FT, OT), pp. 1–7.
- CIG-2016-ChuIHT #game studies #learning #video
- Position-based reinforcement learning biased MCTS for General Video Game Playing (CYC, SI, TH, RT), pp. 1–8.
- CIG-2016-ClericoCPMTFGJ #classification #game studies #predict #video
- Biometrics and classifier fusion to predict the fun-factor in video gaming (AC, CC, MP, PEM, ST, THF, JCG, PLJ), pp. 1–8.
- CIG-2016-CookGC #automation #generative #optimisation #towards
- Towards the automatic optimisation of procedural content generators (MC0, JG, SC), pp. 1–8.
- CIG-2016-DeboeverieRAVP #classification #game studies #gesture #machine learning
- Human gesture classification by brute-force machine learning for exergaming in physiotherapy (FD, SR, GA, PV, WP), pp. 1–7.
- CIG-2016-DeWittLL #3d #evolution #game studies #realtime
- Evolving micro for 3D Real-Time Strategy games (TD, SJL, SL0), pp. 1–8.
- CIG-2016-DrachenGGHLSK #analysis #behaviour #clustering #comparative #profiling
- Guns and guardians: Comparative cluster analysis and behavioral profiling in destiny (AD, JG, CG, EH, PL, RS, DK), pp. 1–8.
- CIG-2016-DrachenRRS #game studies #mobile
- Stylized facts for mobile game analytics (AD, NR, JR, RS), pp. 1–8.
- CIG-2016-Garcia-SanchezT
- Evolutionary deckbuilding in hearthstone (PGS, APT, GS, AMG, JJMG), pp. 1–8.
- CIG-2016-GeorgiouD #design #game studies #personalisation
- Personalised track design in car racing games (TG, YD), pp. 1–8.
- CIG-2016-GrafP #monte carlo #revisited #simulation
- Monte-Carlo simulation balancing revisited (TG, MP), pp. 1–7.
- CIG-2016-GravinaLY #generative
- Constrained surprise search for content generation (DG, AL, GNY), pp. 1–8.
- CIG-2016-Greenwood #social
- Altruistic punishment can help resolve tragedy of the commons social dilemmas (GWG), pp. 1–7.
- CIG-2016-GuckelsbergerSC #motivation
- Intrinsically motivated general companion NPCs via Coupled Empowerment Maximisation (CG, CS, SC), pp. 1–8.
- CIG-2016-HolmgardTH #assessment #game studies #performance
- Computational intelligence and cognitive performance assessment games (CH, JT, LH), pp. 1–8.
- CIG-2016-HornVLP #estimation #game studies #hybrid
- MCTS/EA hybrid GVGAI players and game difficulty estimation (HH, VV, DPL, MP), pp. 1–8.
- CIG-2016-IkedaVS #detection
- Detection and labeling of bad moves for coaching go (KI, SV, NS), pp. 1–8.
- CIG-2016-KaravolosLY #evolution
- Evolving missions for Dwarf quest dungeons (DK, AL, GNY), pp. 1–2.
- CIG-2016-KaravolosLY16a #evolution #game studies
- Evolving missions to create game spaces (DK, AL, GNY), pp. 1–8.
- CIG-2016-KempkaWRTJ #framework #learning #named #platform #research #visual notation
- ViZDoom: A Doom-based AI research platform for visual reinforcement learning (MK, MW, GR, JT, WJ), pp. 1–8.
- CIG-2016-KersjesS #game studies #modelling
- Modeling believable game characters (HK, PS), pp. 1–8.
- CIG-2016-KiourtK #modelling #social #using
- Using opponent models to train inexperienced synthetic agents in social environments (CK, DK), pp. 1–4.
- CIG-2016-KurekJ #multi
- Heterogeneous team deep q-learning in low-dimensional multi-agent environments (MK, WJ), pp. 1–8.
- CIG-2016-LiebanaSTSL #game studies #robust #video
- Analyzing the robustness of general video game playing agents (DPL, SS, JT, TS, SML), pp. 1–8.
- CIG-2016-LopesLY #generative #multi #named
- Sonancia: A multi-faceted generator for horror (PLL, AL, GNY), pp. 1–2.
- CIG-2016-MandaiK #evaluation #incremental
- Improved LinUCT and its evaluation on incremental random-feature tree (YM, TK), pp. 1–8.
- CIG-2016-MendesTN #game studies #video
- Hyper-heuristic general video game playing (AM, JT, AN), pp. 1–8.
- CIG-2016-MozgovoyPU #self
- Believable self-learning AI for world of tennis (MM, MP, IU), pp. 1–7.
- CIG-2016-Nelson #corpus #game studies #scalability
- Investigating vanilla MCTS scaling on the GVG-AI game corpus (MJN), pp. 1–7.
- CIG-2016-Ontanon #game studies #monte carlo #realtime
- Informed Monte Carlo Tree Search for Real-Time Strategy games (SO), pp. 1–8.
- CIG-2016-ParkK #using #visual notation
- Deep Q-learning using redundant outputs in visual doom (HSP, KJK), pp. 1–2.
- CIG-2016-PatrascuR #collaboration #evolution #interactive #named
- Artefacts: Minecraft meets collaborative interactive evolution (CP, SR), pp. 1–8.
- CIG-2016-PowleyCGSN #automation #design #game studies
- Semi-automated level design via auto-playtesting for handheld casual game creation (EJP, SC, SEG, RS, MJN), pp. 1–8.
- CIG-2016-SaasGP #clustering #game studies
- Discovering playing patterns: Time series clustering of free-to-play game data (AS, AG, AP), pp. 1–8.
- CIG-2016-SaccoLY #approach #game studies #generative #semantics
- A holistic approach for semantic-based game generation (OS, AL, GNY), pp. 1–8.
- CIG-2016-SatoI #algorithm #game studies
- Three types of forward pruning techniques to apply the alpha beta algorithm to turn-based strategy games (NS, KI), pp. 1–8.
- CIG-2016-SchmittK #algorithm #multi #search-based #simulation
- A multi-objective genetic algorithm for simulating optimal fights in StarCraft II (JS, HK), pp. 1–8.
- CIG-2016-SephtonCDHS #android #mining #predict #using
- Using association rule mining to predict opponent deck content in android: Netrunner (NS, PIC, SD, VJH, NHS), pp. 1–8.
- CIG-2016-Shaker #framework #generative #learning #motivation
- Intrinsically motivated reinforcement learning: A promising framework for procedural content generation (NS), pp. 1–8.
- CIG-2016-ShakerA #experience #learning #predict
- Transfer learning for cross-game prediction of player experience (NS, MAZ), pp. 1–8.
- CIG-2016-ShiC #generative #learning #online
- Online level generation in Super Mario Bros via learning constructive primitives (PS, KC0), pp. 1–8.
- CIG-2016-SifaSDOB #game studies #learning #predict #representation
- Predicting Retention in Sandbox Games with Tensor Factorization-based Representation Learning (RS, SS, AD, CO, CB), pp. 1–8.
- CIG-2016-SilvaITN #generative #heuristic
- Generating heuristics for novice players (FdMS, AI, JT, AN), pp. 1–8.
- CIG-2016-SironiW #agile #comparison #estimation #game studies
- Comparison of rapid action value estimation variants for general game playing (CFS, MHMW), pp. 1–8.
- CIG-2016-SoemersSSW #game studies #monte carlo #realtime #video
- Enhancements for real-time Monte-Carlo Tree Search in General Video Game Playing (DJNJS, CFS, TS, MHMW), pp. 1–8.
- CIG-2016-SoemersW #game studies #network #reuse #video
- Hierarchical Task Network Plan Reuse for video games (DJNJS, MHMW), pp. 1–8.
- CIG-2016-SorensenOR #behaviour #evolution #interactive
- Breeding a diversity of Super Mario behaviors through interactive evolution (PDS, JMO, SR), pp. 1–7.
- CIG-2016-StanescuBHB #game studies #network #realtime #using
- Evaluating real-time strategy game states using convolutional neural networks (MS, NAB, AH, MB), pp. 1–7.
- CIG-2016-StephensonR #generative
- Procedural generation of complex stable structures for angry birds levels (MS, JR), pp. 1–8.
- CIG-2016-SungurS #algorithm #behaviour #learning
- Voluntary behavior on cortical learning algorithm based agents (AKS, ES), pp. 1–7.
- CIG-2016-SunLSHK #game studies #modelling
- Modeling player decisions in a supply chain game (YS, CL, SCS, CH, DRK), pp. 1–8.
- CIG-2016-TamassiaRSDZH #approach #game studies #markov #modelling #online #predict
- Predicting player churn in destiny: A Hidden Markov models approach to predicting player departure in a major online game (MT, WLR, RS, AD, FZ, MH), pp. 1–8.
- CIG-2016-TogeliusY #game studies
- General general game AI (JT, GNY), pp. 1–8.
- CIG-2016-Ventura #game studies
- Beyond computational intelligence to computational creativity in games (DV), pp. 1–8.
- CIG-2016-ViljanenAPH #game studies #mobile #modelling
- Modelling user retention in mobile games (MV, AA, TP, JH), pp. 1–8.
- CIG-2016-ViljanenAPH16a #difference #equation #game studies #mobile #process #question
- User activity decay in mobile games determined by simple differential equations? (MV, AA, TP, JH), pp. 1–8.
- CIG-2016-WaardRB #game studies #monte carlo #video
- Monte Carlo Tree Search with options for general video game playing (MdW, DMR, SCJB), pp. 1–8.
- CIG-2016-WilliamsLL #contest
- Ms. Pac-Man Versus Ghost Team CIG 2016 competition (PRW, DPL, SML), pp. 1–8.
- CIG-2016-XuV #heuristic
- Heuristics for sleep and heal in combat (SX, CV), pp. 1–8.
- CIG-2016-YooK #algorithm #game studies #using #video
- Changing video game graphic styles using neural algorithms (BY, KJK), pp. 1–2.