Travelled to:
1 × Australia
1 × Estonia
1 × France
1 × Italy
1 × Portugal
1 × United Kingdom
2 × Canada
2 × Japan
4 × USA
Collaborated with:
∅ D.J.Howe D.Miller A.W.Appel S.Matwin A.Momigliano E.L.Gunter G.Dufay A.Roychoudhury F.A.Stomp J.Despeyroux A.Hirschowitz I.T.Hernádvölgyi V.Capretta F.Pfenning J.Hannan G.Nadathur A.Scedrov
Talks about:
proof (5) abstract (3) theorem (3) program (3) languag (3) tutori (3) syntax (3) semant (3) prolog (3) lambda (3)
Person: Amy P. Felty
DBLP: Felty:Amy_P=
Facilitated 2 volumes:
Contributed to:
Wrote 18 papers:
- PPDP-2009-FeltyM #hybrid #reasoning
- Reasoning with hypothetical judgments and open terms in hybrid (APF, AM), pp. 83–92.
- CADE-2005-DufayFM #data flow #information management #ml #privacy
- Privacy-Sensitive Information Flow with JML (GD, APF, SM), pp. 116–130.
- RTA-2005-Felty #approach #semantics #tutorial
- A Tutorial Example of the Semantic Approach to Foundational Proof-Carrying Code (APF), pp. 394–406.
- TLCA-2005-Felty #approach #semantics #tutorial
- A Tutorial Example of the Semantic Approach to Foundational Proof-Carrying Code: Abstract (APF), p. 10.
- TLCA-2005-MatwinFHC #data mining #formal method #mining #privacy #using
- Privacy in Data Mining Using Formal Methods (SM, APF, ITH, VC), pp. 278–292.
- POPL-2000-AppelF #semantics
- A Semantic Model of Types and Machine Instuctions for Proof-Carrying Code (AWA, APF), pp. 243–253.
- CADE-1999-FeltyHR #abstraction #syntax #using
- Formal Metatheory using Implicit Syntax, and an Application to Data Abstraction for Asynchronous Systems (APF, DJH, AR), pp. 237–251.
- ICLP-1999-AppelF #lightweight #prolog
- Lightweight Lemmas in λ-Prolog (AWA, APF), pp. 411–425.
- CAV-1998-FeltyHS #protocol #verification
- Protocol Verification in Nuprl (APF, DJH, FAS), pp. 428–439.
- CADE-1997-FeltyH #hybrid #interactive #proving #theorem proving #using
- Hybrid Interactive Theorem Proving Using Nuprl and HOL (APF, DJH), pp. 351–365.
- CADE-1996-Felty #calculus #proving #set
- Proof Search with Set Variable Instantiation in the Calculus of Constructions (APF), pp. 658–672.
- TLCA-1995-DespeyrouxFH #coq #higher-order #syntax
- Higher-Order Abstract Syntax in Coq (JD, APF, AH), pp. 124–138.
- CADE-1994-FeltyH #proving #theorem proving
- Tactic Theorem Proving with Refinement-Tree Proofs and Metavariables (APF, DJH), pp. 605–619.
- ILPS-1993-Felty #definite clause grammar #higher-order #parsing #syntax
- Definite Clause Grammars for Parsing Higher-Order Syntax (APF), p. 668.
- CADE-1990-FeltyGMP #prolog #tutorial #λ-calculus
- Tutorial on Lambda-Prolog (APF, ELG, DM, FP), p. 682.
- CADE-1990-FeltyM #encoding #logic programming #programming language #λ-calculus
- Encoding a Dependent-Type Lambda-Calculus in a Logic Programming Language (APF, DM), pp. 221–235.
- CADE-1988-FeltyGHMNS #logic programming #named #programming language #prolog #λ-calculus
- Lambda-Prolog: An Extended Logic Programming Language (APF, ELG, JH, DM, GN, AS), pp. 754–755.
- CADE-1988-FeltyM #higher-order #logic programming #programming language #proving #specification #theorem proving
- Specifying Theorem Provers in a Higher-Order Logic Programming Language (APF, DM), pp. 61–80.