Travelled to:
1 × China
1 × France
1 × Ireland
1 × Spain
2 × Canada
3 × USA
Collaborated with:
A.Kobsa M.C.Willemsen H.Jin ∅ B.Livshits X.Page N.J.M.Reijmer P.J.Wisniewski A.K.M.N.Islam S.Patil R.Chow G.Saldamli S.Bostandjiev J.O'Donovan D.G.F.M.Bollen M.P.Graus
Talks about:
recommend (7) system (6) user (5) privaci (3) social (3) understand (2) prefer (2) method (2) differ (2) share (2)
Person: Bart P. Knijnenburg
DBLP: Knijnenburg:Bart_P=
Contributed to:
Wrote 11 papers:
- CSCW-2015-WisniewskiIKP #network #privacy #social
- Give Social Network Users the Privacy They Want (PJW, AKMNI, BPK, SP), pp. 1427–1441.
- CHI-2014-KobsaKL #behaviour #personalisation #privacy
- Let’s do it at my place instead?: attitudinal and behavioral study of privacy in client-side personalization (AK, BPK, BL), pp. 81–90.
- CHI-2013-KnijnenburgKJ #privacy #question
- Preference-based location sharing: are more privacy options really better? (BPK, AK, HJ), pp. 2667–2676.
- CSCW-2013-PageKK #social #social media #web #what
- What a tangled web we weave: lying backfires in location-sharing social media (XP, BPK, AK), pp. 273–284.
- RecSys-2013-ChowJKS #data analysis #difference #recommendation
- Differential data analysis for recommender systems (RC, HJ, BPK, GS), pp. 323–326.
- RecSys-2012-Knijnenburg #recommendation
- Conducting user experiments in recommender systems (BPK), pp. 3–4.
- RecSys-2012-KnijnenburgBOK #recommendation #social
- Inspectability and control in social recommenders (BPK, SB, JO, AK), pp. 43–50.
- RecSys-2011-KnijnenburgRW #how #interactive #recommendation
- Each to his own: how different users call for different interaction methods in recommender systems (BPK, NJMR, MCW), pp. 141–148.
- RecSys-2011-KnijnenburgWK #evaluation #recommendation
- A pragmatic procedure to support the user-centric evaluation of recommender systems (BPK, MCW, AK), pp. 321–324.
- RecSys-2010-BollenKWG #comprehension #recommendation
- Understanding choice overload in recommender systems (DGFMB, BPK, MCW, MPG), pp. 63–70.
- RecSys-2009-KnijnenburgW #adaptation #comprehension #elicitation #recommendation #user satisfaction
- Understanding the effect of adaptive preference elicitation methods on user satisfaction of a recommender system (BPK, MCW), pp. 381–384.