Travelled to:
1 × Finland
1 × France
1 × Germany
1 × Israel
1 × Italy
1 × United Kingdom
2 × Australia
2 × China
5 × USA
Collaborated with:
C.M.Cumby R.Samdani K.Chang C.Zhai A.Garg J.Han V.G.V.Vydiswaran C.Lee J.Pasternack W.Yih A.R.Golding X.Wang C.Zhai A.Klementiev K.Small S.Har-Peled R.Greiner A.J.Grove H.Zhuang A.G.Parameswaran Y.Lu H.Wang P.Pirolli M.Chang V.Srikumar D.Goldwasser Pranav Garg 0001 D.Neider P.Madhusudan C.Wang Y.Song A.El-Kishky M.Zhang Y.Li C.Wang F.Han X.Yan
Talks about:
learn (8) model (4) distribut (3) linear (3) unsupervis (2) structur (2) network (2) cluster (2) margin (2) trust (2)
Person: Dan Roth
DBLP: Roth:Dan
Contributed to:
Wrote 22 papers:
- ICML-2015-LeeR #distributed #linear #optimisation #polynomial
- Distributed Box-Constrained Quadratic Optimization for Dual Linear SVM (CPL, DR), pp. 987–996.
- KDD-2015-WangSERZH #clustering #documentation #network
- Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks (CW, YS, AEK, DR, MZ, JH), pp. 1215–1224.
- KDD-2015-ZhuangPRH #crowdsourcing
- Debiasing Crowdsourced Batches (HZ, AGP, DR, JH), pp. 1593–1602.
- ICML-c1-2014-SamdaniCR #clustering #online
- A Discriminative Latent Variable Model for Online Clustering (RS, KWC, DR), pp. 1–9.
- KDD-2013-LiWHHRY #ambiguity #mining
- Mining evidences for named entity disambiguation (YL, CW, FH, JH, DR, XY), pp. 1070–1078.
- KDD-2013-WangZR #comprehension #evolution #generative #probability #research
- Understanding evolution of research themes: a probabilistic generative model for citations (XW, CZ, DR), pp. 1115–1123.
- CIKM-2012-LuWZR #network
- Unsupervised discovery of opposing opinion networks from forum discussions (YL, HW, CZ, DR), pp. 1642–1646.
- CIKM-2012-VydiswaranZRP #education #named #topic
- BiasTrust: teaching biased users about controversial topics (VGVV, CZ, DR, PP), pp. 1905–1909.
- ICML-2012-SamdaniR #learning #performance #predict
- Efficient Decomposed Learning for Structured Prediction (RS, DR), p. 200.
- KDD-2011-ChangR #convergence #linear #memory management #modelling #performance #scalability
- Selective block minimization for faster convergence of limited memory large-scale linear models (KWC, DR), pp. 699–707.
- KDD-2011-VydiswaranZR #framework #trust
- Content-driven trust propagation framework (VGVV, CZ, DR), pp. 974–982.
- ICML-2010-ChangSGR #learning
- Structured Output Learning with Indirect Supervision (MWC, VS, DG, DR), pp. 199–206.
- CIKM-2009-PasternackR #learning
- Learning better transliterations (JP, DR), pp. 177–186.
- ICML-2008-KlementievRS #modelling #rank
- Unsupervised rank aggregation with distance-based models (AK, DR, KS), pp. 472–479.
- ICML-2005-RothY #integer #linear #programming #random
- Integer linear programming inference for conditional random fields (DR, WtY), pp. 736–743.
- ICML-2003-CumbyR #kernel #learning #on the #relational
- On Kernel Methods for Relational Learning (CMC, DR), pp. 107–114.
- ICML-2003-GargR #learning
- Margin Distribution and Learning (AG, DR), pp. 210–217.
- ICML-2002-GargHR #bound #on the
- On generalization bounds, projection profile, and margin distribution (AG, SHP, DR), pp. 171–178.
- KR-2000-CumbyR #learning #relational
- Relational Representations that Facilitate Learning (CMC, DR), pp. 425–434.
- ICML-1996-GoldingR
- Applying Winnow to Context-Sensitive Spelling Correction (ARG, DR), pp. 182–190.
- ICML-1996-GreinerGR #classification #learning
- Learning Active Classifiers (RG, AJG, DR), pp. 207–215.
- POPL-2016-0001NMR #invariant #learning #using
- Learning invariants using decision trees and implication counterexamples (PG0, DN, PM, DR), pp. 499–512.