Travelled to:
1 × Canada
1 × China
2 × Australia
7 × USA
Collaborated with:
H.Garcia-Molina N.Polyzotis J.Widom M.Joglekar S.Madden H.Park Y.Gao M.Vartak R.Kaushik A.Arasu S.Guo J.D.Ullman A.Rajaraman A.Deshpande H.Zhuang D.Roth J.Han C.Ré M.H.Teh K.Bellare S.Iyengar V.Rastogi N.N.Dalvi R.Rastogi G.Koutrika B.Bercovitz S.Bhattacherjee A.Chavan S.Huang S.Rahman A.D.Sarma A.Kim E.Blais P.Indyk R.Rubinfeld S.Boyd A.Gupta A.Ramesh R.Pang A.P.Bhardwaj A.J.Elmore D.R.Karger S.Madden H.Subramanyam E.Wu R.Zhang
Talks about:
data (7) crowd (5) recommend (4) algorithm (4) visual (4) crowdsourc (3) search (3) human (3) evalu (3) prerequisit (2)
Person: Aditya G. Parameswaran
DBLP: Parameswaran:Aditya_G=
Contributed to:
Wrote 24 papers:
- KDD-2015-ZhuangPRH #crowdsourcing
- Debiasing Crowdsourced Batches (HZ, AGP, DR, JH), pp. 1593–1602.
- SIGMOD-2015-JoglekarGPR #correlation #evaluation
- Exploiting Correlations for Expensive Predicate Evaluation (MJ, HGM, AGP, CR), pp. 1183–1198.
- VLDB-2015-BhardwajDEKMPS0 #collaboration #data analysis
- Collaborative Data Analytics with DataHub (APB, AD, AJE, DRK, SM, AGP, HS, EW, RZ), pp. 1916–1927.
- VLDB-2015-BhattacherjeeCH #dataset #trade-off #version control
- Principles of Dataset Versioning: Exploring the Recreation/Storage Tradeoff (SB, AC, SH, AD, AGP), pp. 1346–1357.
- VLDB-2015-JoglekarGP #data analysis
- Smart Drill-Down: A New Data Exploration Operator (MJ, HGM, AGP), pp. 1928–1939.
- VLDB-2015-KimBPIMR #agile #visualisation
- Rapid Sampling for Visualizations with Ordering Guarantees (AK, EB, AGP, PI, SM, RR), pp. 521–532.
- VLDB-2015-VartakRMPP #data-driven #named #performance #recommendation #visual notation #visualisation
- SEEDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics (MV, SR, SM, AGP, NP), pp. 2182–2193.
- SIGMOD-2014-ParameswaranTGW #named #tool support
- DataSift: a crowd-powered search toolkit (AGP, MHT, HGM, JW), pp. 885–888.
- VLDB-2014-GaoP #algorithm #exclamation
- Finish Them!: Pricing Algorithms for Human Computation (YG, AGP), pp. 1965–1976.
- VLDB-2014-ParameswaranBG0PW #algorithm #rating
- Optimal Crowd-Powered Rating and Filtering Algorithms (AGP, SB, HGM, AG, NP, JW), pp. 685–696.
- VLDB-2014-VartakMPP #automation #generative #named #query #visualisation
- SEEDB: Automatically Generating Query Visualizations (MV, SM, AGP, NP), pp. 1581–1584.
- CIKM-2013-ParameswaranKA #performance
- Efficient parsing-based search over structured data (AGP, RK, AA), pp. 49–58.
- KDD-2013-JoglekarGP
- Evaluating the crowd with confidence (MJ, HGM, AGP), pp. 686–694.
- CIKM-2012-ParameswaranPGPW #crowdsourcing #declarative #named
- Deco: declarative crowdsourcing (AGP, HP, HGM, NP, JW), pp. 1203–1212.
- KDD-2012-BellareIPR
- Active sampling for entity matching (KB, SI, AGP, VR), pp. 1131–1139.
- SIGMOD-2012-GuoPG
- So who won?: dynamic max discovery with the crowd (SG, AGP, HGM), pp. 385–396.
- SIGMOD-2012-ParameswaranGPPRW #algorithm #named
- CrowdScreen: algorithms for filtering data with humans (AGP, HGM, HP, NP, AR, JW), pp. 361–372.
- VLDB-2012-ParkPPGPW #crowdsourcing #declarative #named
- Deco: A System for Declarative Crowdsourcing (HP, RP, AGP, HGM, NP, JW), pp. 1990–1993.
- VLDB-2011-ParameswaranDGR #robust #web
- Optimal Schemes for Robust Web Extraction (AGP, NND, HGM, RR), pp. 980–991.
- VLDB-2011-ParameswaranSGPW #graph
- Human-assisted graph search: it’s okay to ask questions (AGP, ADS, HGM, NP, JW), pp. 267–278.
- CIKM-2010-ParameswaranGU #recommendation
- Evaluating, combining and generalizing recommendations with prerequisites (AGP, HGM, JDU), pp. 919–928.
- SIGMOD-2010-ParameswaranKBG #algorithm #mining #named #precedence #recommendation
- Recsplorer: recommendation algorithms based on precedence mining (AGP, GK, BB, HGM), pp. 87–98.
- VLDB-2010-ParameswaranGR #concept #dataset #scalability #towards #web
- Towards The Web of Concepts: Extracting Concepts from Large Datasets (AGP, HGM, AR), pp. 566–577.
- RecSys-2009-ParameswaranG #recommendation
- Recommendations with prerequisites (AGP, HGM), pp. 353–356.