Travelled to:
1 × France
1 × Singapore
1 × Spain
1 × Switzerland
1 × The Netherlands
2 × China
2 × Ireland
3 × United Kingdom
4 × USA
Collaborated with:
A.Hanjalic Y.Shi M.d.Rijke M.Tsagkias A.Karatzoglou L.Baltrunas S.Rudinac C.Kofler J.He B.Loni N.Oliver A.Said N.Rajput A.Singh S.Srivastava R.Vliegendhart J.A.Pouwelse X.Zhao J.Wang W.Li P.Serdyukov A.P.d.Vries C.Eickhoff
Talks about:
collabor (6) filter (6) recommend (4) spoken (4) factor (4) user (4) base (4) awar (4) exploit (3) context (3)
Person: Martha Larson
DBLP: Larson:Martha
Contributed to:
Wrote 21 papers:
- CIKM-2014-ShiKBLH #learning #named #recommendation
- CARS2: Learning Context-aware Representations for Context-aware Recommendations (YS, AK, LB, ML, AH), pp. 291–300.
- ECIR-2014-LoniSLH #collaboration
- Cross-Domain Collaborative Filtering with Factorization Machines (BL, YS, ML, AH), pp. 656–661.
- RecSys-2014-LoniSLH #collaboration
- “Free lunch” enhancement for collaborative filtering with factorization machines (BL, AS, ML, AH), pp. 281–284.
- CSCW-2013-LarsonRSS #exclamation #game studies #student
- I want to be Sachin Tendulkar!: a spoken english cricket game for rural students (ML, NR, AS, SS), pp. 1353–1364.
- RecSys-2013-ShiKBLH #multi #named #optimisation #rank
- xCLiMF: optimizing expected reciprocal rank for data with multiple levels of relevance (YS, AK, LB, ML, AH), pp. 431–434.
- RecSys-2012-ShiKBLOH #collaboration #learning #named #rank
- CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering (YS, AK, LB, ML, NO, AH), pp. 139–146.
- SIGIR-2012-ShiKBLHO #named #optimisation #recommendation
- TFMAP: optimizing MAP for top-n context-aware recommendation (YS, AK, LB, ML, AH, NO), pp. 155–164.
- SIGIR-2012-ShiZWLH #adaptation #recommendation
- Adaptive diversification of recommendation results via latent factor portfolio (YS, XZ, JW, ML, AH), pp. 175–184.
- CIKM-2011-LiSVEL #twitter
- The where in the tweet (WL, PS, APdV, CE, ML), pp. 2473–2476.
- CIKM-2011-VliegendhartLKP #network #peer-to-peer
- A peer’s-eye view: network term clouds in a peer-to-peer system (RV, ML, CK, JAP), pp. 1909–1912.
- ECIR-2011-KoflerLH #internet #video
- To Seek, Perchance to Fail: Expressions of User Needs in Internet Video Search (CK, ML, AH), pp. 611–616.
- ECIR-2011-ShiLH #collaboration #multi #ranking #self
- Reranking Collaborative Filtering with Multiple Self-contained Modalities (YS, ML, AH), pp. 699–703.
- ECIR-2011-ShiLH11a #how #question #recommendation #trust
- How Far Are We in Trust-Aware Recommendation? (YS, ML, AH), pp. 704–707.
- ECIR-2010-RudinacLH #consistency #query #retrieval
- Exploiting Result Consistency to Select Query Expansions for Spoken Content Retrieval (SR, ML, AH), pp. 645–648.
- RecSys-2010-ShiLH #collaboration #learning #matrix #rank
- List-wise learning to rank with matrix factorization for collaborative filtering (YS, ML, AH), pp. 269–272.
- SIGIR-2010-RudinacLH #concept #query #retrieval #visual notation
- Visual concept-based selection of query expansions for spoken content retrieval (SR, ML, AH), pp. 891–892.
- ECIR-2009-LarsonTHR #fault #recognition #semantics #speech
- Investigating the Global Semantic Impact of Speech Recognition Error on Spoken Content Collections (ML, MT, JH, MdR), pp. 755–760.
- ECIR-2009-TsagkiasLR #predict
- Exploiting Surface Features for the Prediction of Podcast Preference (MT, ML, MdR), pp. 473–484.
- RecSys-2009-ShiLH #collaboration #similarity
- Exploiting user similarity based on rated-item pools for improved user-based collaborative filtering (YS, ML, AH), pp. 125–132.
- ECIR-2008-HeLR #metric #predict #query #using
- Using Coherence-Based Measures to Predict Query Difficulty (JH, ML, MdR), pp. 689–694.
- SIGIR-2008-TsagiasLR #speech
- Term clouds as surrogates for user generated speech (MT, ML, MdR), pp. 773–774.