BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × France
1 × Singapore
1 × Spain
1 × Switzerland
1 × The Netherlands
2 × China
2 × Ireland
3 × United Kingdom
4 × USA
Collaborated with:
A.Hanjalic Y.Shi M.d.Rijke M.Tsagkias A.Karatzoglou L.Baltrunas S.Rudinac C.Kofler J.He B.Loni N.Oliver A.Said N.Rajput A.Singh S.Srivastava R.Vliegendhart J.A.Pouwelse X.Zhao J.Wang W.Li P.Serdyukov A.P.d.Vries C.Eickhoff
Talks about:
collabor (6) filter (6) recommend (4) spoken (4) factor (4) user (4) base (4) awar (4) exploit (3) context (3)

Person: Martha Larson

DBLP DBLP: Larson:Martha

Contributed to:

CIKM 20142014
ECIR 20142014
RecSys 20142014
CSCW 20132013
RecSys 20132013
RecSys 20122012
SIGIR 20122012
CIKM 20112011
ECIR 20112011
ECIR 20102010
RecSys 20102010
SIGIR 20102010
ECIR 20092009
RecSys 20092009
ECIR 20082008
SIGIR 20082008

Wrote 21 papers:

CIKM-2014-ShiKBLH #learning #named #recommendation
CARS2: Learning Context-aware Representations for Context-aware Recommendations (YS, AK, LB, ML, AH), pp. 291–300.
ECIR-2014-LoniSLH #collaboration
Cross-Domain Collaborative Filtering with Factorization Machines (BL, YS, ML, AH), pp. 656–661.
RecSys-2014-LoniSLH #collaboration
“Free lunch” enhancement for collaborative filtering with factorization machines (BL, AS, ML, AH), pp. 281–284.
CSCW-2013-LarsonRSS #exclamation #game studies #student
I want to be Sachin Tendulkar!: a spoken english cricket game for rural students (ML, NR, AS, SS), pp. 1353–1364.
RecSys-2013-ShiKBLH #multi #named #optimisation #rank
xCLiMF: optimizing expected reciprocal rank for data with multiple levels of relevance (YS, AK, LB, ML, AH), pp. 431–434.
RecSys-2012-ShiKBLOH #collaboration #learning #named #rank
CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering (YS, AK, LB, ML, NO, AH), pp. 139–146.
SIGIR-2012-ShiKBLHO #named #optimisation #recommendation
TFMAP: optimizing MAP for top-n context-aware recommendation (YS, AK, LB, ML, AH, NO), pp. 155–164.
SIGIR-2012-ShiZWLH #adaptation #recommendation
Adaptive diversification of recommendation results via latent factor portfolio (YS, XZ, JW, ML, AH), pp. 175–184.
CIKM-2011-LiSVEL #twitter
The where in the tweet (WL, PS, APdV, CE, ML), pp. 2473–2476.
CIKM-2011-VliegendhartLKP #network #peer-to-peer
A peer’s-eye view: network term clouds in a peer-to-peer system (RV, ML, CK, JAP), pp. 1909–1912.
ECIR-2011-KoflerLH #internet #video
To Seek, Perchance to Fail: Expressions of User Needs in Internet Video Search (CK, ML, AH), pp. 611–616.
ECIR-2011-ShiLH #collaboration #multi #ranking #self
Reranking Collaborative Filtering with Multiple Self-contained Modalities (YS, ML, AH), pp. 699–703.
ECIR-2011-ShiLH11a #how #question #recommendation #trust
How Far Are We in Trust-Aware Recommendation? (YS, ML, AH), pp. 704–707.
ECIR-2010-RudinacLH #consistency #query #retrieval
Exploiting Result Consistency to Select Query Expansions for Spoken Content Retrieval (SR, ML, AH), pp. 645–648.
RecSys-2010-ShiLH #collaboration #learning #matrix #rank
List-wise learning to rank with matrix factorization for collaborative filtering (YS, ML, AH), pp. 269–272.
SIGIR-2010-RudinacLH #concept #query #retrieval #visual notation
Visual concept-based selection of query expansions for spoken content retrieval (SR, ML, AH), pp. 891–892.
ECIR-2009-LarsonTHR #fault #recognition #semantics #speech
Investigating the Global Semantic Impact of Speech Recognition Error on Spoken Content Collections (ML, MT, JH, MdR), pp. 755–760.
ECIR-2009-TsagkiasLR #predict
Exploiting Surface Features for the Prediction of Podcast Preference (MT, ML, MdR), pp. 473–484.
RecSys-2009-ShiLH #collaboration #similarity
Exploiting user similarity based on rated-item pools for improved user-based collaborative filtering (YS, ML, AH), pp. 125–132.
ECIR-2008-HeLR #metric #predict #query #using
Using Coherence-Based Measures to Predict Query Difficulty (JH, ML, MdR), pp. 689–694.
SIGIR-2008-TsagiasLR #speech
Term clouds as surrogates for user generated speech (MT, ML, MdR), pp. 773–774.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.