Travelled to:
1 × Brazil
1 × Finland
1 × Singapore
1 × Spain
1 × Sweden
1 × The Netherlands
1 × Turkey
1 × United Kingdom
2 × Canada
3 × China
5 × USA
Collaborated with:
S.Zhu W.Xu X.Liu Y.Chi K.Yu D.Wang T.Li M.Han J.D.Lafferty Z.Guo Z.Zhang Y.Zhang X.Ji X.Zhang J.Wang S.Zhang S.Zhang H.Ning Y.Zhou T.S.Huang Z.Chen D.Kong H.Tao
Talks about:
document (8) cluster (6) use (6) factor (5) model (4) classif (3) summar (3) matrix (3) video (3) learn (3)
Person: Yihong Gong
DBLP: Gong:Yihong
Contributed to:
Wrote 21 papers:
- ICPR-2014-ZhangWGZZ #analysis #using #verification
- Low Computation Face Verification Using Class Center Analysis (XZ, JW, YG, SZ, SZ), pp. 4543–4547.
- ICPR-2010-GuoZCZG #documentation #learning
- Unsupervised Learning from Linked Documents (ZG, SZ, YC, ZZ, YG), pp. 730–733.
- CIKM-2009-WangZLG #comparative #documentation #summary
- Comparative document summarization via discriminative sentence selection (DW, SZ, TL, YG), pp. 1963–1966.
- ICML-2009-YuLZG #collaboration #parametricity #predict #random #scalability #using
- Large-scale collaborative prediction using a nonparametric random effects model (KY, JDL, SZ, YG), pp. 1185–1192.
- SIGIR-2009-GuoZCZG #documentation #topic
- A latent topic model for linked documents (ZG, SZ, YC, ZZ, YG), pp. 720–721.
- SIGIR-2009-YuZLG #collaboration #matrix #parametricity #performance #scalability
- Fast nonparametric matrix factorization for large-scale collaborative filtering (KY, SZ, JDL, YG), pp. 211–218.
- CIKM-2008-ChiZGZ #personalisation #probability #recommendation
- Probabilistic polyadic factorization and its application to personalized recommendation (YC, SZ, YG, YZ), pp. 941–950.
- CIKM-2008-WangZLCG #clustering #comprehension #documentation #multi #summary
- Integrating clustering and multi-document summarization to improve document understanding (DW, SZ, TL, YC, YG), pp. 1435–1436.
- ICPR-2008-NingXZGH #detection #difference #learning
- Temporal difference learning to detect unsafe system states (HN, WX, YZ, YG, TSH), pp. 1–4.
- SIGIR-2008-YuZXG #categorisation #design #learning #using
- trNon-greedy active learning for text categorization using convex ansductive experimental design (KY, SZ, WX, YG), pp. 635–642.
- VLDB-2008-ZhuLCWG #database
- Dynamic active probing of helpdesk databases (SZ, TL, ZC, DW, YG), pp. 748–760.
- SIGIR-2007-ZhuYCG #classification #matrix #using
- Combining content and link for classification using matrix factorization (SZ, KY, YC, YG), pp. 487–494.
- ICPR-v1-2006-HanXG #clustering #segmentation #video
- Video Foreground Segmentation Based on Sequential Feature Clustering (MH, WX, YG), pp. 492–496.
- ICPR-v3-2006-KongHXTG #random #video
- A Conditional Random Field Model for Video Super-resolution (DK, MH, WX, HT, YG), pp. 619–622.
- SIGIR-2005-ZhuJXG #classification #multi #using
- Multi-labelled classification using maximum entropy method (SZ, XJ, WX, YG), pp. 274–281.
- SIGIR-2004-XuG #clustering #concept #documentation
- Document clustering by concept factorization (WX, YG), pp. 202–209.
- SIGIR-2003-XuLG #clustering #documentation #matrix
- Document clustering based on non-negative matrix factorization (WX, XL, YG), pp. 267–273.
- SIGIR-2002-LiuGXZ #clustering #documentation #refinement
- Document clustering with cluster refinement and model selection capabilities (XL, YG, WX, SZ), pp. 191–198.
- ICDAR-2001-GongL #summary
- Creating Generic Text Summaries (YG, XL), pp. 903–907.
- SIGIR-2001-GongL #analysis #semantics #summary #using
- Generic Text Summarization Using Relevance Measure and Latent Semantic Analysis (YG, XL), pp. 19–25.
- ICPR-v1-2000-GongL #classification #segmentation #video
- Video Shot Segmentation and Classification (YG, XL), pp. 1860–1863.