Tag #code review
63 papers:
- SANER-2019-EbertCNS
- Confusion in Code Reviews: Reasons, Impacts, and Coping Strategies (FE, FC, NN, AS), pp. 49–60.
- SANER-2019-PaulBS #sentiment
- Expressions of Sentiments during Code Reviews: Male vs. Female (RP, AB, KZS), pp. 26–37.
- SCAM-2019-PaixaoM #empirical #harmful #overview #scalability
- Rebasing in Code Review Considered Harmful: A Large-Scale Empirical Investigation (MP, PHMM), pp. 45–55.
- ESEC-FSE-2019-HiraoMIM #approach #empirical #graph #overview
- The review linkage graph for code review analytics: a recovery approach and empirical study (TH, SM, AI, KM), pp. 578–589.
- ICSE-2019-AlamiCW #community #open source #overview #question #why
- Why does code review work for open source software communities? (AA, MLC, AW), pp. 1073–1083.
- ICSE-2019-SpadiniPBHBB #empirical #overview #testing
- Test-driven code review: an empirical study (DS, FP, TB, SH, MB, AB), pp. 1061–1072.
- ICSME-2018-EbertCNS #overview
- Communicative Intention in Code Review Questions (FE, FC, NN, AS), pp. 519–523.
- ICSME-2018-WenGRM #impact analysis #overview #perspective
- BLIMP Tracer: Integrating Build Impact Analysis with Code Review (RW, DG, MGR, SM), pp. 685–694.
- MSR-2018-PaixaoKHH #named #source code
- CROP: linking code reviews to source code changes (MP, JK, DH, MH), pp. 46–49.
- SANER-2018-ChatleyJ #automation #mining #named #overview #repository
- Diggit: Automated code review via software repository mining (RC, LJ), pp. 567–571.
- SANER-2018-ThongtanunamMHI #android #empirical #overview
- Review participation in modern code review: An empirical study of the Android, Qt, and OpenStack projects (journal-first abstract) (PT, SM, AEH, HI), p. 475.
- ESEC-FSE-2018-0002JCHZ #developer #overview #perspective
- Salient-class location: help developers understand code change in code review (YH0, NJ, XC, KH, ZZ), pp. 770–774.
- ICSE-2018-SpadiniASBB #developer #how #overview #testing #why
- When testing meets code review: why and how developers review tests (DS, MFA, MADS, MB, AB), pp. 677–687.
- ICSME-2017-EbertCNS #detection
- Confusion Detection in Code Reviews (FE, FC, NN, AS), pp. 549–553.
- MSR-2017-RahmanR #integration
- Impact of continuous integration on code reviews (MMR0, CKR), pp. 499–502.
- MSR-2017-RahmanRK #developer #experience #overview #predict #using
- Predicting usefulness of code review comments using textual features and developer experience (MMR0, CKR, RGK), pp. 215–226.
- ASE-2017-AhmedBIR #analysis #interactive #named #overview #sentiment
- SentiCR: a customized sentiment analysis tool for code review interactions (TA, AB, AI, SR), pp. 106–111.
- ASE-2017-MenariniYG #case study #overview #performance #semantics #user study
- Semantics-assisted code review: an efficient toolchain and a user study (MM, YY, WGG), pp. 554–565.
- ICSE-2017-FloydSW #overview #representation
- Decoding the representation of code in the brain: an fMRI study of code review and expertise (BF, TS, WW), pp. 175–186.
- ICSME-2016-0001KI #overview #perspective #recommendation #search-based
- Search-Based Peer Reviewers Recommendation in Modern Code Review (AO0, RGK, KI), pp. 367–377.
- MSR-2016-Izquierdo-Cortazar #case study #experience #overview #process
- Characterization of the Xen project code review process: an experience report (DIC, LK, JMGB, SD, NS), pp. 386–390.
- MSR-2016-YangKYI #dataset #mining #overview #people #process #repository
- Mining the modern code review repositories: a dataset of people, process and product (XY, RGK, NY, HI), pp. 460–463.
- SCAM-2016-BiaseBB #overview #security
- A Security Perspective on Code Review: The Case of Chromium (MdB, MB, AB), pp. 21–30.
- IFM-2016-0002HB #formal method #performance #question
- Can Formal Methods Improve the Efficiency of Code Reviews? (MH0, RH, RB), pp. 3–19.
- ASE-2016-HannebauerPSG #automation #comparison #empirical #recommendation
- Automatically recommending code reviewers based on their expertise: an empirical comparison (CH, MP, SS, VG), pp. 99–110.
- ASE-2016-RahmanRRC #git #named #recommendation
- CORRECT: code reviewer recommendation at GitHub for Vendasta technologies (MMR, CKR, JR, JAC), pp. 792–797.
- FSE-2016-BaumLNS #industrial #overview #process
- Factors influencing code review processes in industry (TB, OL, KN, KS), pp. 85–96.
- FSE-2016-OosterwaalDCSB #overview #perspective #visualisation
- Visualizing code and coverage changes for code review (SO, AvD, RC, AAS, AB), pp. 1038–1041.
- ICSE-2016-KononenkoBG #developer #how #overview #quality
- Code review quality: how developers see it (OK, OB, MWG), pp. 1028–1038.
- ICSE-2016-ThongtanunamMHI #overview #perspective #quality
- Revisiting code ownership and its relationship with software quality in the scope of modern code review (PT, SM, AEH, HI), pp. 1039–1050.
- HT-2015-ChongDL
- Did You Expect Your Users to Say This?: Distilling Unexpected Micro-reviews for Venue Owners (WHC, BTD, EPL), pp. 13–22.
- CSEET-2015-SripadaRS #overview #re-engineering
- In Support of Peer Code Review and Inspection in an Undergraduate Software Engineering Course (SS, YRR, AS), pp. 3–6.
- ITiCSE-2015-ScottG #assessment #education #quality #reliability
- Reliability in the Assessment of Program Quality by Teaching Assistants During Code Reviews (MJS, GG), p. 346.
- ICSME-2015-BavotaR #quality
- Four eyes are better than two: On the impact of code reviews on software quality (GB, BR), pp. 81–90.
- ICSME-2015-KononenkoBGCG #matter #overview #people #quality #question
- Investigating code review quality: Do people and participation matter? (OK, OB, LG, YC, MWG), pp. 111–120.
- MSR-2015-BirdCG #framework #lessons learnt #overview #platform
- Lessons Learned from Building and Deploying a Code Review Analytics Platform (CB, TC, MG), pp. 191–201.
- MSR-2015-BosuGB #empirical
- Characteristics of Useful Code Reviews: An Empirical Study at Microsoft (AB, MG, CB), pp. 146–156.
- MSR-2015-TaoK #clustering #overview #perspective
- Partitioning Composite Code Changes to Facilitate Code Review (YT, SK), pp. 180–190.
- MSR-2015-ThongtanunamMHI #empirical #overview
- Investigating Code Review Practices in Defective Files: An Empirical Study of the Qt System (PT, SM, AEH, HI), pp. 168–179.
- SANER-2015-MoralesMK #case study #design #overview #quality
- Do code review practices impact design quality? A case study of the Qt, VTK, and ITK projects (RM, SM, FK), pp. 171–180.
- SANER-2015-PanichellaAPA #developer #question #static analysis #tool support
- Would static analysis tools help developers with code reviews? (SP, VA, MDP, GA), pp. 161–170.
- SANER-2015-ThongtanunamTKY #approach #overview #perspective #recommendation
- Who should review my code? A file location-based code-reviewer recommendation approach for Modern Code Review (PT, CT, RGK, NY, HI, KiM), pp. 141–150.
- SANER-2015-TymchukML #overview
- Code review: Veni, ViDI, vici (YT, AM, ML), pp. 151–160.
- ICSE-v1-2015-BarnettBBL #automation #composition #developer #overview
- Helping Developers Help Themselves: Automatic Decomposition of Code Review Changesets (MB, CB, JB, SKL), pp. 134–144.
- ICSE-v1-2015-ZhangSPK #interactive #overview
- Interactive Code Review for Systematic Changes (TZ, MS, JP, MK), pp. 111–122.
- ICSE-v2-2015-CzerwonkaGT #debugging #how #overview
- Code Reviews Do Not Find Bugs. How the Current Code Review Best Practice Slows Us Down (JC, MG, JT), pp. 27–28.
- ICSME-2014-ThongtanunamYYKCFI #dataset #named #overview #visualisation
- ReDA: A Web-Based Visualization Tool for Analyzing Modern Code Review Dataset (PT, XY, NY, RGK, AECC, KF, HI), pp. 605–608.
- MSR-2014-BellerBZJ #open source #problem #question
- Modern code reviews in open-source projects: which problems do they fix? (MB, AB, AZ, EJ), pp. 202–211.
- MSR-2014-McIntoshKAH #case study #overview #quality
- The impact of code review coverage and code review participation on software quality: a case study of the qt, VTK, and ITK projects (SM, YK, BA, AEH), pp. 192–201.
- FSE-2014-AlvesSK #named #overview #refactoring
- RefDistiller: a refactoring aware code review tool for inspecting manual refactoring edits (ELGA, MS, MK), pp. 751–754.
- FSE-2014-ZhangSK #interactive #named #overview
- Critics: an interactive code review tool for searching and inspecting systematic changes (TZ, MS, MK), pp. 755–758.
- SAC-2014-VasconcelosAG #predict #what
- What makes your opinion popular?: predicting the popularity of micro-reviews in foursquare (MAV, JMA, MAG), pp. 598–603.
- ICPC-2013-BernhartG #comprehension #on the #source code
- On the understanding of programs with continuous code reviews (MB, TG), pp. 192–198.
- MSR-2013-HamasakiKYCFI #dataset #overview #repository #what
- Who does what during a code review? datasets of OSS peer review repositories (KH, RGK, NY, AECC, KF, HI), pp. 49–52.
- MSR-2013-MukadamBR #android #overview
- Gerrit software code review data from Android (MM, CB, PCR), pp. 45–48.
- WCRE-2013-BaysalKHG #overview #perspective
- The influence of non-technical factors on code review (OB, OK, RH, MWG), pp. 122–131.
- CIKM-2013-NguyenLT #performance #set #using
- Using micro-reviews to select an efficient set of reviews (TSN, HWL, PT), pp. 1067–1076.
- ICSE-2013-BacchelliB #challenge #overview #perspective
- Expectations, outcomes, and challenges of modern code review (AB, CB), pp. 712–721.
- ICSE-2013-Balachandran #automation #quality #recommendation #static analysis #using
- Reducing human effort and improving quality in peer code reviews using automatic static analysis and reviewer recommendation (VB), pp. 931–940.
- CSEET-2012-RongLXZ #empirical #overview #student
- The Effect of Checklist in Code Review for Inexperienced Students: An Empirical Study (GR, JL, MX, TZ), pp. 120–124.
- PLATEAU-2012-BosuC #open source #overview
- Peer code review in open source communitiesusing reviewboard (AB, JCC), pp. 17–24.
- SEKE-2009-AxelssonBFSK #detection #fault #interactive #machine learning #overview #visualisation
- Detecting Defects with an Interactive Code Review Tool Based on Visualisation and Machine Learning (SA, DB, RF, DS, DK), pp. 412–417.
- ICSE-1997-Baker #quality
- Code Reviews Enhance Software Quality (RABJ), pp. 570–571.