23 papers:
- DATE-2015-SunKPE #algebra #geometry #using #verification
- Formal verification of sequential Galois field arithmetic circuits using algebraic geometry (XS, PK, TP, FE), pp. 1623–1628.
- ICALP-v1-2015-FullaZ #constraints #infinity
- A Galois Connection for Valued Constraint Languages of Infinite Size (PF, SZ), pp. 517–528.
- OOPSLA-2015-DaraisMH #composition #program analysis #reuse
- Galois transformers and modular abstract interpreters: reusable metatheory for program analysis (DD, MM, DVH), pp. 552–571.
- DAC-2014-PrussKE #abstraction #equivalence #scalability #using #verification
- Equivalence Verification of Large Galois Field Arithmetic Circuits using Word-Level Abstraction via Gröbner Bases (TP, PK, FE), p. 6.
- POPL-2014-CousotC #abstract interpretation #calculus
- A galois connection calculus for abstract interpretation (PC, RC), pp. 3–4.
- ASPLOS-2014-NguyenLP #on-demand
- Deterministic galois: on-demand, portable and parameterless (DN, AL, KP), pp. 499–512.
- DATE-2012-LvKE #multi #performance #reduction #verification
- Efficient Gröbner basis reductions for formal verification of galois field multipliers (JL, PK, FE), pp. 899–904.
- SAS-2012-Midtgaard0M #proving
- A Structural Soundness Proof for Shivers’s Escape Technique — A Case for Galois Connections (JM, MDA, MM), pp. 352–369.
- ICPR-2012-BoumaizaT #recognition
- Impact of a codebook filtering step on a galois lattice structure for graphics recognition (AB, ST), pp. 278–281.
- ICDAR-2011-BoumaizaT #approach #novel #recognition #representation #word
- A Novel Approach for Graphics Recognition Based on Galois Lattice and Bag of Words Representation (AB, ST), pp. 829–833.
- PPDP-2008-SilvaO #functional #prototype #proving #quote
- “Galculator”: functional prototype of a Galois-connection based proof assistant (PFS, JNO), pp. 44–55.
- FM-2005-Bosnacki #abstraction #calculus #on the #μ-calculus
- On Some Galois Connection Based Abstractions for the μ-Calculus (DB), pp. 366–381.
- TLCA-2005-Fujita #polymorphism
- Galois Embedding from Polymorphic Types into Existential Types (KeF), pp. 194–208.
- ICFP-2004-Launchbury #assurance #named
- Galois: high assurance software (JL), p. 3.
- KR-2002-BerN #comparison #design
- Design and Comparison of Lattices of Topological Relations Based on Galois Lattice Theory (FLB, AN), pp. 37–48.
- SAC-2002-MartinezL #database #image
- Browsing image databases with Galois’ lattices (JMM, EL), pp. 791–795.
- CAV-2001-MoriokaKY #algorithm #performance #towards #verification
- Towards Efficient Verification of Arithmetic Algorithms over Galois Fields GF(2m) (SM, YK, TY), pp. 465–477.
- ICML-1998-LiquiereS #graph #machine learning
- Structural Machine Learning with Galois Lattice and Graphs (ML, JS), pp. 305–313.
- EDTC-1997-HuangW #array #design #performance
- High-speed C-testable systolic array design for Galois-field inversion (CTH, CWW), pp. 342–346.
- ICML-1993-CarpinetoR #approach #clustering #concept #named
- GALOIS: An Order-Theoretic Approach to Conceptual Clustering (CC, GR), pp. 33–40.
- OOPSLA-1993-GodinM #maintenance #using
- Building and Maintaining Analysis-Level Class Hierarchies Using Galois Lattices (RG, HM), pp. 394–410.
- PLILP-1992-CousotC #abstract interpretation
- Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation (PC, RC), pp. 269–295.
- WSA-1991-CousotC91a #abstract interpretation #comparison
- Comparison of the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation (PC, RC), pp. 107–110.