BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Collaborated with:
R.Sifa C.Bauckhage Alessandro Canossa C.Thurau Georgios N. Yannakakis M.Hitchens Julian Runge Fabian Hadiji James Alfred Walker K.Kersting M.Schubert S.Kriglstein Julian Togelius Simon Demediuk Diego Klabjan Valerio Bonometti Alex R. Wade F.Block Janus Rau Møller Sørensen K.Bauer Robert W. D. Veitch G.Wallner Arnav Jhala Nicholas Ross Y.N.Ravari P.Spronck Falko Weigert Petersen Line Ebdrup Thomsen P.Mirza-Babaei Sasha Makarovych J.Pirker Isabel Lesjak Andreas Punz Myat Aung L.E.Nacke Tobias Mahlmann Sridev Srikanth C.Ojeda Peter York Charles Ringer Mark Hall Marinka Copier M.Montola Mirjam P. Eladhari J.Stenros Marco Tamassia William L. Raffe Fabio Zambetta Oliver James Scholten Nathan Gerard Jayy Hughes Sebastian Deterding David Zendle Eric Thurston Lundquist Yungjen Kung Pranav Simha Rao James Green Chester Gray Elie Harik Patty Lu Peter I. Cowling A. V. Kokkinakis C. Yoder Adam Katona Ryan J. Spick V.J.Hodge Mike Schaekermann Giovanni Ribeiro Guenter Wallner Daniel M. Johnson 0001 K.Kuikkaniemi Jörg Niesenhaus H.Korhonen Wouter van den Hoogen Karolien Poels W.A.IJsselsteijn Yvonne A. W. de Kort Y.Sun Ye Tu Yu Ang Siva Nekkanti Shantanu Raghav
Talks about:
game (22) player (14) predict (10) behavior (7) play (7) destini (5) profil (5) cluster (4) model (4) mobil (4)

Person: Anders Drachen

DBLP DBLP: Drachen:Anders

Contributed to:

CIG 20092009
DiGRA 20092009
CIG 20102010
FDG 20112011
CIG 20122012
CIG 20132013
FDG 20132013
CIG 20142014
AIIDE 20152015
AIIDE 20162016
CIG 20162016
AIIDE 20172017
CHI PLAY 20172017
AIIDE 20182018
CIG 20182018
ICGJ 20182018
AIIDE 20192019
CHI PLAY 20192019
CoG 20192019
FDG 20192019

Wrote 35 papers:

CIG-2009-DrachenCY #modelling #self #using
Player modeling using self-organization in Tomb Raider: Underworld (AD, AC, GNY), pp. 1–8.
DiGRA-2009-CanossaD #development #game studies
Patterns of Play: Play-Personas in User-Centred Game Development (AC, AD).
DiGRA-2009-DrachenCMEHS #game studies
Role-Playing Games: The State of Knowledge [Panel Abstracts] (AD, MC, MM, MPE, MH, JS).
DiGRA-2009-DrachenHJY #data-driven #towards
Towards Data-Driven Drama Management: Issues in Data Collection and Annotation (AD, MH, AJ, GNY).
DiGRA-2009-NackeDKNKHPIK #experience #research
Playability and Player Experience Research [Panel Abstracts] (LEN, AD, KK, JN, HK, WvdH, KP, WAI, YAWdK).
CIG-2010-MahlmannDTCY #behaviour #predict
Predicting player behavior in Tomb Raider: Underworld (TM, AD, JT, AC, GNY), pp. 178–185.
FDG-2011-CanossaDS #detection #exclamation
Arrrgghh!!!: blending quantitative and qualitative methods to detect player frustration (AC, AD, JRMS), pp. 61–68.
FDG-2011-DrachenBV #game studies #process
Only the good... get pirated: game piracy activity vs. metacritic score (AD, KB, RWDV), pp. 292–294.
CIG-2012-BauckhageKSTDC #empirical #game studies #how
How players lose interest in playing a game: An empirical study based on distributions of total playing times (CB, KK, RS, CT, AD, AC), pp. 139–146.
CIG-2012-DrachenSBT #behaviour #clustering #game studies
Guns, swords and data: Clustering of player behavior in computer games in the wild (AD, RS, CB, CT), pp. 163–170.
CIG-2013-DrachenS #game studies #visualisation
Spatial game analytics and visualization (AD, MS), pp. 1–8.
CIG-2013-SifaDBTC #behaviour #evolution
Behavior evolution in Tomb Raider Underworld (RS, AD, CB, CT, AC), pp. 1–8.
FDG-2013-DrachenTSB #behaviour #clustering #comparison
A comparison of methods for player clustering via behavioral telemetry (AD, CT, RS, CB), pp. 245–252.
CIG-2014-BauckhageSDTH #behaviour #clustering #game studies #heatmap #using
Beyond heatmaps: Spatio-temporal clustering using behavior-based partitioning of game levels (CB, RS, AD, CT, FH), pp. 1–8.
CIG-2014-HadijiSDTKB #predict
Predicting player churn in the wild (FH, RS, AD, CT, KK, CB), pp. 1–8.
CIG-2014-SifaBD #modelling #scalability
The Playtime Principle: Large-scale cross-games interest modeling (RS, CB, AD), pp. 1–8.
AIIDE-2015-SifaDB #analysis #behaviour #scalability
Large-Scale Cross-Game Player Behavior Analysis on Steam (RS, AD, CB), pp. 198–204.
AIIDE-2015-SifaHRDKB #game studies #mobile #predict
Predicting Purchase Decisions in Mobile Free-to-Play Games (RS, FH, JR, AD, KK, CB), pp. 79–85.
AIIDE-2016-DrachenLKRSRK #agile #game studies #mobile #predict
Rapid Prediction of Player Retention in Free-to-Play Mobile Games (AD, ETL, YK, PSR, RS, JR, DK), pp. 23–29.
CIG-2016-DrachenGGHLSK #analysis #behaviour #clustering #comparative #profiling
Guns and guardians: Comparative cluster analysis and behavioral profiling in destiny (AD, JG, CG, EH, PL, RS, DK), pp. 1–8.
CIG-2016-DrachenRRS #game studies #mobile
Stylized facts for mobile game analytics (AD, NR, JR, RS), pp. 1–8.
CIG-2016-SifaSDOB #game studies #learning #predict #representation
Predicting Retention in Sandbox Games with Tensor Factorization-based Representation Learning (RS, SS, AD, CO, CB), pp. 1–8.
CIG-2016-TamassiaRSDZH #approach #game studies #markov #modelling #online #predict
Predicting player churn in destiny: A Hidden Markov models approach to predicting player departure in a major online game (MT, WLR, RS, AD, FZ, MH), pp. 1–8.
AIIDE-2017-RavariSSD #game studies #hybrid #online #predict
Predicting Victory in a Hybrid Online Competitive Game: The Case of Destiny (YNR, PS, RS, AD), pp. 207–213.
CHI-PLAY-2017-PetersenTMD #approach #game studies #mobile
Evaluating the Onboarding Phase of Free-toPlay Mobile Games: A Mixed-Method Approach (FWP, LET, PMB, AD), pp. 377–388.
CHI-PLAY-2017-SchaekermannRWK #behaviour #game studies #metric #motivation #profiling #self
Curiously Motivated: Profiling Curiosity with Self-Reports and Behaviour Metrics in the Game “Destiny” (MS, GR, GW, SK, DMJ0, AD, RS, LEN), pp. 143–156.
AIIDE-2018-CanossaMTD #profiling #string
Like a DNA String: Sequence-Based Player Profiling in Tom Clancy's The Division (AC, SM, JT, AD), pp. 152–158.
CIG-2018-AungBDCKYW #dataset #learning #predict #scalability
Predicting Skill Learning in a Large, Longitudinal MOBA Dataset (MA, VB, AD, PIC, AVK, CY, ARW), pp. 1–7.
ICGJ-2018-PirkerLPD #aspect-oriented #development #game studies #process #social
Social Aspects of the Game Development Process in the Global Gam Jam (JP, IL, AP, AD), pp. 9–16.
AIIDE-2019-DemediukYDWB #analysis #identification
Role Identification for Accurate Analysis in Dota 2 (SD, PY, AD, JAW, FB), pp. 130–138.
CHI-PLAY-2019-ScholtenHDDWZ
Ethereum Crypto-Games: Mechanics, Prevalence, and Gambling Similarities (OJS, NGJH, SD, AD, JAW, DZ), pp. 379–389.
CoG-2019-BonomettiRHWD #estimation #interactive #modelling #probability
Modelling Early User-Game Interactions for Joint Estimation of Survival Time and Churn Probability (VB, CR, MH, ARW, AD), pp. 1–8.
CoG-2019-KatonaSHDBDW #learning #predict #using
Time to Die: Death Prediction in Dota 2 using Deep Learning (AK, RJS, VJH, SD, FB, AD, JAW), pp. 1–8.
CoG-2019-WallnerKD #game studies #online #profiling #twitter
Tweeting your Destiny: Profiling Users in the Twitter Landscape around an Online Game (GW, SK, AD), pp. 1–8.
FDG-2019-AungDSTANRKSD #game studies #profiling
The trails of Just Cause 2: spatio-temporal player profiling in open-world games (MA, SD, YS, YT, YA, SN, SR, DK, RS, AD), p. 11.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.