Proceedings of the 33rd International Conference on Software Maintenance and Evolution
ICSME, 2017.
Contents (78 items)
- ICSME-2017-PalombaZ #question #refactoring #smell #testing
- Does Refactoring of Test Smells Induce Fixing Flaky Tests? (FP, AZ), pp. 1–12.
- ICSME-2017-BeskerMB #question #technical debt
- The Pricey Bill of Technical Debt: When and by Whom will it be Paid? (TB, AM, JB), pp. 13–23.
- ICSME-2017-PanM #detection
- Detecting DOM-Sourced Cross-Site Scripting in Browser Extensions (JP, XM), pp. 24–34.
- ICSME-2017-LevinY #co-evolution #fine-grained #lens #maintenance #semantics
- The Co-evolution of Test Maintenance and Code Maintenance through the Lens of Fine-Grained Semantic Changes (SL, AY), pp. 35–46.
- ICSME-2017-ZhangZLHLG #android #named
- Embroidery: Patching Vulnerable Binary Code of Fragmentized Android Devices (XZ, YZ0, JL, YH, HL, DG), pp. 47–57.
- ICSME-2017-BlondeauEACCD #case study #developer #scalability #testing #what
- What are the Testing Habits of Developers? A Case Study in a Large IT Company (VB, AE, NA, SC, PC, SD), pp. 58–68.
- ICSME-2017-SilvaWGSG #how #question #what
- How Long and How Much: What to Expect from Summer of Code Participants? (JDOS, ISW, DMG, IFS, MAG), pp. 69–79.
- ICSME-2017-FanLZZZ #algorithm #challenge #empirical #fault #predict #privacy
- The Utility Challenge of Privacy-Preserving Data-Sharing in Cross-Company Defect Prediction: An Empirical Study of the CLIFF&MORPH Algorithm (YF, CL, XZ, GZ, YZ), pp. 80–90.
- ICSME-2017-LiJZZ #fault #kernel #learning #multi #predict
- Heterogeneous Defect Prediction Through Multiple Kernel Learning and Ensemble Learning (ZL0, XYJ, XZ, HZ0), pp. 91–102.
- ICSME-2017-GuC0SDML #android #automation #multi #named #testing
- AimDroid: Activity-Insulated Multi-level Automated Testing for Android Applications (TG, CC, TL0, CS, JD, XM, JL0), pp. 103–114.
- ICSME-2017-DeshmukhMPSD #debugging #learning #retrieval #towards #using
- Towards Accurate Duplicate Bug Retrieval Using Deep Learning Techniques (JD, KMA, SP, SS, ND), pp. 115–124.
- ICSME-2017-HanLXLF #learning #predict #using
- Learning to Predict Severity of Software Vulnerability Using Only Vulnerability Description (ZH, XL0, ZX, HL, ZF0), pp. 125–136.
- ICSME-2017-GuoWXL #adaptation #consistency #detection #named #nondeterminism #scheduling
- GEAS: Generic Adaptive Scheduling for High-Efficiency Context Inconsistency Detection (BG, HW, CX0, JL0), pp. 137–147.
- ICSME-2017-AngererGPL #empirical #program analysis #variability
- An Experiment Comparing Lifted and Delayed Variability-Aware Program Analysis (FA, PG, HP, LL), pp. 148–158.
- ICSME-2017-HuangXL #fault #modelling #predict
- Supervised vs Unsupervised Models: A Holistic Look at Effort-Aware Just-in-Time Defect Prediction (QH, XX0, DL0), pp. 159–170.
- ICSME-2017-KevicF #tool support #towards
- Towards Activity-Aware Tool Support for Change Tasks (KK, TF0), pp. 171–182.
- ICSME-2017-VassalloSZRLZPP #open source #perspective
- A Tale of CI Build Failures: An Open Source and a Financial Organization Perspective (CV, GS, FZ, DR, PL, AZ, MDP, SP), pp. 183–193.
- ICSME-2017-HodovanKG #debugging
- Coarse Hierarchical Delta Debugging (RH, ÁK0, TG), pp. 194–203.
- ICSME-2017-Yu #evolution #multi #named #testing
- SimEvo: Testing Evolving Multi-process Software Systems (TY), pp. 204–215.
- ICSME-2017-ZampettiNAKP #design #recommendation #self #technical debt
- Recommending when Design Technical Debt Should be Self-Admitted (FZ, CN, GA, FK, MDP), pp. 216–226.
- ICSME-2017-MondalRS #debugging #empirical
- Bug Propagation through Code Cloning: An Empirical Study (MM, CKR, KAS), pp. 227–237.
- ICSME-2017-MaldonadoASS #empirical #self #technical debt
- An Empirical Study on the Removal of Self-Admitted Technical Debt (EdSM, RA, ES, AS), pp. 238–248.
- ICSME-2017-LiFZMR #approach #clone detection #detection #named
- CCLearner: A Deep Learning-Based Clone Detection Approach (LL, HF, WZ, NM, BGR), pp. 249–260.
- ICSME-2017-NassifR
- Revisiting Turnover-Induced Knowledge Loss in Software Projects (MN, MPR), pp. 261–272.
- ICSME-2017-RomanskyBCHG #energy #modelling
- Deep Green: Modelling Time-Series of Software Energy Consumption (SR, NCB, SAC, AH, RG), pp. 273–283.
- ICSME-2017-WangWW
- Composite Software Diversification (SW0, PW0, DW), pp. 284–294.
- ICSME-2017-AlorainiN #android #fault #open source #state of the art #static analysis #tool support
- Evaluating State-of-the-Art Free and Open Source Static Analysis Tools Against Buffer Errors in Android Apps (BA, MN), pp. 295–306.
- ICSME-2017-AbidDCM #approach #automation #documentation #evaluation
- The Evaluation of an Approach for Automatic Generated Documentation (NJA, ND, MLC, JIM), pp. 307–317.
- ICSME-2017-XiaLBSL #scalability
- Personality and Project Success: Insights from a Large-Scale Study with Professionals (XX0, DL0, LB, AS0, SL), pp. 318–328.
- ICSME-2017-BaumSB #on the #order #overview #perspective #source code
- On the Optimal Order of Reading Source Code Changes for Review (TB, KS, AB), pp. 329–340.
- ICSME-2017-ChenS #case study #performance
- An Exploratory Study of Performance Regression Introducing Code Changes (JC, WS), pp. 341–352.
- ICSME-2017-GallabaH0B #javascript #refactoring
- Refactoring Asynchrony in JavaScript (KG, QH, AM0, IB), pp. 353–363.
- ICSME-2017-CaiR #android #comprehension #programming #security
- Understanding Android Application Programming and Security: A Dynamic Study (HC, BGR), pp. 364–375.
- ICSME-2017-ChaparroFM #behaviour #debugging #locality #query #using
- Using Observed Behavior to Reformulate Queries during Text Retrieval-based Bug Localization (OC, JMF, AM), pp. 376–387.
- ICSME-2017-WangWW17a #machine learning #recognition #semantics
- Semantics-Aware Machine Learning for Function Recognition in Binary Code (SW0, PW0, DW), pp. 388–398.
- ICSME-2017-VasquezMP #automation #mobile #scalability #testing
- Continuous, Evolutionary and Large-Scale: A New Perspective for Automated Mobile App Testing (MLV, KM, DP), pp. 399–410.
- ICSME-2017-CastelluccioAK #empirical
- Is it Safe to Uplift this Patch?: An Empirical Study on Mozilla Firefox (MC, LA, FK), pp. 411–421.
- ICSME-2017-YueMW #debugging
- A Characterization Study of Repeated Bug Fixes (RY, NM, QW), pp. 422–432.
- ICSME-2017-NguyenNNN #evolution #testing
- Interaction-Based Tracking of Program Entities for Test Case Evolution (HAN, TTN, TNN, HVN), pp. 433–443.
- ICSME-2017-LyuGWH #android #database #empirical
- An Empirical Study of Local Database Usage in Android Applications (YL, JG, MW, WGJH), pp. 444–455.
- ICSME-2017-AsaduzzamanRSH #framework #recommendation
- Recommending Framework Extension Examples (MA, CKR, KAS, DH), pp. 456–466.
- ICSME-2017-McKee0SD
- Software Practitioner Perspectives on Merge Conflicts and Resolutions (SM, NN0, AS, DD), pp. 467–478.
- ICSME-2017-RobillardMTBCEG #developer #documentation #on-demand
- On-demand Developer Documentation (MPR, AM, CT, GB, OC, NAE, MAG, MWG, ML, MLV, GCM, LM, DCS, EW), pp. 479–483.
- ICSME-2017-Sae-LimHS #case study #developer #how #smell
- How Do Developers Select and Prioritize Code Smells? A Preliminary Study (NSL, SH, MS), pp. 484–488.
- ICSME-2017-RaposC #impact analysis #modelling #named
- SimPact: Impact Analysis for Simulink Models (EJR, JRC), pp. 489–493.
- ICSME-2017-HigoK #analysis #metric
- Flattening Code for Metrics Measurement and Analysis (YH, SK), pp. 494–498.
- ICSME-2017-FujiokaN #approach #constraints #feature model #interactive
- Constraints Based Approach to Interactive Feature Location (DF, NN), pp. 499–503.
- ICSME-2017-YangQM #automation #empirical #fault #locality #program repair
- An Empirical Study on the Usage of Fault Localization in Automated Program Repair (DY, YQ, XM), pp. 504–508.
- ICSME-2017-TreudeR #comprehension #stack overflow
- Understanding Stack Overflow Code Fragments (CT, MPR), pp. 509–513.
- ICSME-2017-YiCMJ #automation #source code
- Automated Repair of High Inaccuracies in Numerical Programs (XY, LC, XM, TJ), pp. 514–518.
- ICSME-2017-JenkinsC #android #component #interactive #visual notation
- Dissecting Android Inter-component Communications via Interactive Visual Explorations (JJ, HC), pp. 519–523.
- ICSME-2017-CaoWM #incremental
- Forecasting the Duration of Incremental Build Jobs (QC, RW, SM), pp. 524–528.
- ICSME-2017-YanXZYX #automation #modelling #quality
- Automating Aggregation for Software Quality Modeling (MY, XX0, XZ0, DY0, LX), pp. 529–533.
- ICSME-2017-TerdchanakulHPM #classification #debugging #n-gram #using
- Bug or Not? Bug Report Classification Using N-Gram IDF (PT, HH, PP, KM), pp. 534–538.
- ICSME-2017-SampaioKHSERBR #evolution
- Supporting Microservice Evolution (ARS, HK, BH, JS, TE, NSR, IB, JR), pp. 539–543.
- ICSME-2017-Wesel0RS #developer
- Reviewing Career Paths of the OpenStack Developers (PvW, BL0, GR, AS), pp. 544–548.
- ICSME-2017-EbertCNS #code review #detection
- Confusion Detection in Code Reviews (FE, FC, NN, AS), pp. 549–553.
- ICSME-2017-CokerDGKSP #behaviour #exception #metric
- Behavior Metrics for Prioritizing Investigations of Exceptions (ZC, KD, CLG, NAK, DCS, LLP), pp. 554–563.
- ICSME-2017-WiemanALVD #case study #experience #learning #scalability
- An Experience Report on Applying Passive Learning in a Large-Scale Payment Company (RW, MFA, WL, SV, AvD), pp. 564–573.
- ICSME-2017-GoonetillekeMB #data transformation #dependence #evolution #graph #multi
- Graph Data Management of Evolving Dependency Graphs for Multi-versioned Codebases (OG, DM, BB), pp. 574–583.
- ICSME-2017-Schroeder0KPASH #industrial #predict
- Predicting and Evaluating Software Model Growth in the Automotive Industry (JS, CB0, AK, HP, MA0, MS, TH), pp. 584–593.
- ICSME-2017-HanS #distance #evaluation #metric #network
- Mean Average Distance to Resolver: An Evaluation Metric for Ticket Routing in Expert Network (JH, AS), pp. 594–602.
- ICSME-2017-WangSYAN #automation #impact analysis #named
- RCIA: Automated Change Impact Analysis to Facilitate a Practical Cancer Registry System (SW0, TS, TY0, SA0, JFN), pp. 603–612.
- ICSME-2017-VasquezBMP #android #developer #how #question
- How do Developers Test Android Applications? (MLV, CBC, KM, DP), pp. 613–622.
- ICSME-2017-HuangVGSS #analysis #assembly #execution #named #scalability #visualisation
- Atlantis: Improving the Analysis and Visualization of Large Assembly Execution Traces (HNH, EV0, DMG, MADS, MS), pp. 623–627.
- ICSME-2017-CampbellT #named #natural language
- NLP2Code: Code Snippet Content Assist via Natural Language Tasks (BAC, CT), pp. 628–632.
- ICSME-2017-MerinoGAN #named #visualisation
- CityVR: Gameful Software Visualization (LM, MG, CA, ON), pp. 633–637.
- ICSME-2017-VerwerH #automaton #learning #named
- flexfringe: A Passive Automaton Learning Package (SV, CAH), pp. 638–642.
- ICSME-2017-CaiR17a #android #named #tool support
- DroidFax: A Toolkit for Systematic Characterization of Android Applications (HC, BGR), pp. 643–647.
- ICSME-2017-XuSHL #git #named #personalisation #recommendation
- REPERSP: Recommending Personalized Software Projects on GitHub (WX, XS, JH, BL0), pp. 648–652.
- ICSME-2017-LeuenbergerOGN #api #named
- KOWALSKI: Collecting API Clients in Easy Mode (ML, HO, MG, ON), pp. 653–657.
- ICSME-2017-KrasniqiJM #component #generative #summary
- TraceLab Components for Generating Extractive Summaries of User Stories (RK, SJ, CM), p. 658.
- ICSME-2017-CaiR17b #android #dynamic analysis
- Artifacts for Dynamic Analysis of Android Apps (HC, BGR), p. 659.
- ICSME-2017-Rodeghero #algorithm #automation #behaviour #documentation #generative
- Behavior-Informed Algorithms for Automatic Documentation Generation (PR), pp. 660–664.
- ICSME-2017-Shi #algorithm #constraints #optimisation #theorem proving
- Combining Evolutionary Algorithms with Constraint Solving for Configuration Optimization (KS), pp. 665–669.
- ICSME-2017-Xu #comprehension #evolution #spreadsheet
- Understanding Spreadsheet Evolution in Practice (LX), pp. 670–674.
- ICSME-2017-Li #mining
- Mining AndroZoo: A Retrospect (LL), pp. 675–680.
- ICSME-2017-Gupta #maintenance #mining #predict #process #using
- Improving Software Maintenance Using Process Mining and Predictive Analytics (MG0), pp. 681–686.