Travelled to:
1 × Belgium
1 × Brazil
1 × Canada
1 × India
1 × Japan
1 × Korea
1 × Switzerland
1 × The Netherlands
1 × United Kingdom
3 × Italy
3 × USA
7 × Germany
Collaborated with:
F.Esposito M.Ceci G.Semeraro A.Appice M.Berardi O.Altamura C.Loglisci F.A.Lisi N.Fanizzi S.Ferilli F.Fumarola L.Macchia T.Weninger J.Han G.Porcelli N.Barile A.Lanza P.Guccione A.Ciampi A.Muolo C.D.Antifora G.d.Gennaro C.Brunk M.J.Pazzani H.L.Viktor E.Paquet H.Guo C.Caruso C.Valente
Talks about:
learn (10) document (7) approach (5) relat (5) logic (5) mine (5) data (5) techniqu (4) analysi (4) machin (4)
Person: Donato Malerba
DBLP: Malerba:Donato
Contributed to:
Wrote 28 papers:
- MLDM-2012-CeciAVMPG #classification #paradigm #relational
- Transductive Relational Classification in the Co-training Paradigm (MC, AA, HLV, DM, EP, HG), pp. 11–25.
- MLDM-2012-MacchiaCM #mining #modelling #network #ranking
- Mining Ranking Models from Dynamic Network Data (LM, MC, DM), pp. 566–577.
- SAC-2012-GuccioneCAMM #clustering #network
- Trend cluster based interpolation everywhere in a sensor network (PG, AC, AA, DM, AM), pp. 827–828.
- CIKM-2010-WeningerFHM #database #web
- Mapping web pages to database records via link paths (TW, FF, JH, DM), pp. 1637–1640.
- SAC-2010-AppiceCM #learning
- Transductive learning for spatial regression with co-training (AA, MC, DM), pp. 1065–1070.
- SAC-2010-CeciALM #approach #data mining #mining #ranking #relational
- Complex objects ranking: a relational data mining approach (MC, AA, CL, DM), pp. 1071–1077.
- MLDM-2009-CeciALCFVM #data type #detection #mining #relational
- Relational Frequent Patterns Mining for Novelty Detection from Data Streams (MC, AA, CL, CC, FF, CV, DM), pp. 427–439.
- MLDM-2009-LoglisciM #mining #multi
- Mining Multiple Level Non-redundant Association Rules through Two-Fold Pruning of Redundancies (CL, DM), pp. 251–265.
- ICDAR-2007-CeciBPM #approach #data mining #detection #mining #order
- A Data Mining Approach to Reading Order Detection (MC, MB, GP, DM), pp. 924–928.
- MLDM-2007-CeciABM #learning #relational
- Transductive Learning from Relational Data (MC, AA, NB, DM), pp. 324–338.
- ICDAR-2005-BerardiACM #analysis #layout #process
- A color-based layout analysis to process censorship cards of film archives (MB, OA, MC, DM), pp. 1110–1114.
- ICDAR-2005-CeciBM #comprehension #documentation #image #learning #logic #relational #statistics
- Relational Learning techniques for Document Image Understanding: Comparing Statistical and Logical approaches (MC, MB, DM), pp. 473–477.
- ECIR-2003-CeciM #classification #documentation #html
- Hierarchical Classification of HTML Documents with WebClassII (MC, DM), pp. 57–72.
- ICDAR-2003-MalerbaEACB #approach #documentation #layout #machine learning
- Correcting the Document Layout: A Machine Learning Approach (DM, FE, OA, MC, MB), p. 97–?.
- ICML-2003-BerardiCEM #analysis #layout #learning #logic programming #source code
- Learning Logic Programs for Layout Analysis Correction (MB, MC, FE, DM), pp. 27–34.
- MLDM-2003-CeciAM
- Simplification Methods for Model Trees with Regression and Splitting Nodes (MC, AA, DM), pp. 20–34.
- ICDAR-2001-MalerbaELA #automation #component #comprehension #dependence #documentation #image #logic
- Automated Discovery of Dependencies Between Logical Components in Document Image Understanding (DM, FE, FAL, OA), pp. 174–178.
- MLDM-2001-MalerbaELL #first-order #induction #recognition
- First-Order Rule Induction for the Recognition of Morphological Patterns in Topographic Maps (DM, FE, AL, FAL), pp. 88–101.
- ICDAR-1999-AltamuraEM #adaptation #analysis #documentation #interactive
- WISDOM++: An Interactive and Adaptive Document Analysis System (OA, FE, DM), pp. 366–369.
- MLDM-1999-AltamuraELM #documentation #learning
- Symbolic Learning Techniques in Paper Document Processing (OA, FE, FAL, DM), pp. 159–173.
- ECDL-1997-SemeraroEMFF #library #machine learning #online
- Machine Learning + On-line Libraries = IDL (GS, FE, DM, NF, SF), pp. 195–214.
- ICDAR-1997-EspositoMSAG #library #machine learning #semantics
- Information Capture and Semantic Indexing of Digital Libraries through Machine Learning Techniques (FE, DM, GS, CDA, GdG), pp. 722–727.
- LOPSTR-1997-SemeraroEMFF #datalog #framework #incremental #induction #logic #synthesis
- A Logic Framework for the Incremental Inductive Synthesis of Datalog Theories (GS, FE, DM, NF, SF), pp. 300–321.
- ICDAR-v1-1995-EspositoMS #analysis #approach #knowledge-based #layout
- A knowledge-based approach to the layout analysis (FE, DM, GS), pp. 466–471.
- LOPSTR-1995-SemeraroEM #datalog #refinement #source code
- Ideal Refinement of Datalog Programs (GS, FE, DM), pp. 120–136.
- LOPSTR-1994-SemeraroEMBP #case study #learning #logic #source code
- Avoiding Non-Termination when Learning Logical Programs: A Case Study with FOIL and FOCL (GS, FE, DM, CB, MJP), pp. 183–198.
- ICDAR-1993-EspositoMS #automation #comprehension #documentation
- Automated acquisition of rules for document understanding (FE, DM, GS), pp. 650–654.
- SEKE-1993-EspositoMS #information management #machine learning #refinement
- Machine Learning Techniques for Knowledge Acquisition and Refinement (FE, DM, GS), pp. 319–323.