Travelled to:
1 × Finland
1 × France
1 × Germany
1 × United Kingdom
2 × Canada
2 × China
7 × USA
Collaborated with:
Y.Engel T.A.Mann A.Tamar D.D.Castro J.Y.Yu M.Harel J.N.Tsitsiklis Y.Mansour H.Xu D.Precup R.Meir R.Y.Rubinstein A.Hallak O.Richman O.Maillard E.Delage A.Gopalan D.J.Mankowitz Y.Chen C.Caramanis O.Avner O.Shamir O.Mebel D.Vainsencher O.Dekel J.Frank P.W.Keller D.Peleg E.Even-Dar Y.Gat F.Schnitzler R.El-Yaniv K.Crammer I.Menache A.Hoze U.Klein D.Simester P.Sun
Talks about:
learn (9) process (6) reinforc (5) function (4) varianc (4) polici (4) bandit (4) dynam (4) approxim (3) robust (3)
Person: Shie Mannor
DBLP: Mannor:Shie
Contributed to:
Wrote 30 papers:
- ICML-2015-HallakSMM #learning #modelling
- Off-policy Model-based Learning under Unknown Factored Dynamics (AH, FS, TAM, SM), pp. 711–719.
- ICML-2015-RichmanM #classification #constraints
- Dynamic Sensing: Better Classification under Acquisition Constraints (OR, SM), pp. 267–275.
- ICML-c1-2014-GopalanMM #online #problem
- Thompson Sampling for Complex Online Problems (AG, SM, YM), pp. 100–108.
- ICML-c1-2014-MaillardM
- Latent Bandits (OAM, SM), pp. 136–144.
- ICML-c1-2014-MannM #approximate #policy #scalability
- Scaling Up Approximate Value Iteration with Options: Better Policies with Fewer Iterations (TAM, SM), pp. 127–135.
- ICML-c2-2014-HarelMEC #concept #detection
- Concept Drift Detection Through Resampling (MH, SM, REY, KC), pp. 1009–1017.
- ICML-c2-2014-MannMM
- Time-Regularized Interrupting Options (TRIO) (TAM, DJM, SM), pp. 1350–1358.
- ICML-c2-2014-TamarMX #approximate #robust #scalability #using
- Scaling Up Robust MDPs using Function Approximation (AT, SM, HX), pp. 181–189.
- ICML-c3-2013-ChenCM #robust
- Robust Sparse Regression under Adversarial Corruption (YC, CC, SM), pp. 774–782.
- ICML-c3-2013-TamarCM #difference
- Temporal Difference Methods for the Variance of the Reward To Go (AT, DDC, SM), pp. 495–503.
- KDD-2013-HallakCM #markov #process
- Model selection in markovian processes (AH, DDC, SM), pp. 374–382.
- ICML-2012-AvnerMS #multi
- Decoupling Exploration and Exploitation in Multi-Armed Bandits (OA, SM, OS), p. 145.
- ICML-2012-CastroTM #policy
- Policy Gradients with Variance Related Risk Criteria (DDC, AT, SM), p. 215.
- ICML-2012-MannorMX #nondeterminism #robust
- Lightning Does Not Strike Twice: Robust MDPs with Coupled Uncertainty (SM, OM, HX), p. 62.
- ICML-2011-HarelM #learning #multi
- Learning from Multiple Outlooks (MH, SM), pp. 401–408.
- ICML-2011-MannorT #markov #optimisation #process
- Mean-Variance Optimization in Markov Decision Processes (SM, JNT), pp. 177–184.
- ICML-2011-VainsencherDM #estimation #online
- Bundle Selling by Online Estimation of Valuation Functions (DV, OD, SM), pp. 1137–1144.
- ICML-2011-YuM
- Unimodal Bandits (JYY, SM), pp. 41–48.
- ICML-2009-YuM #problem
- Piecewise-stationary bandit problems with side observations (JYY, SM), pp. 1177–1184.
- ICML-2008-FrankMP #learning
- Reinforcement learning in the presence of rare events (JF, SM, DP), pp. 336–343.
- ICML-2007-DelageM #markov #nondeterminism #optimisation #performance #process
- Percentile optimization in uncertain Markov decision processes with application to efficient exploration (ED, SM), pp. 225–232.
- ICML-2006-KellerMP #approximate #automation #learning #programming
- Automatic basis function construction for approximate dynamic programming and reinforcement learning (PWK, SM, DP), pp. 449–456.
- ICML-2005-EngelMM #learning #process
- Reinforcement learning with Gaussian processes (YE, SM, RM), pp. 201–208.
- ICML-2005-MannorPR #classification
- The cross entropy method for classification (SM, DP, RYR), pp. 561–568.
- ICML-2004-MannorMHK #abstraction #clustering #learning
- Dynamic abstraction in reinforcement learning via clustering (SM, IM, AH, UK).
- ICML-2004-MannorSST #bias #estimation
- Bias and variance in value function estimation (SM, DS, PS, JNT).
- ICML-2003-EngelMM #approach #difference #learning #process
- Bayes Meets Bellman: The Gaussian Process Approach to Temporal Difference Learning (YE, SM, RM), pp. 154–161.
- ICML-2003-Even-DarMM #learning
- Action Elimination and Stopping Conditions for Reinforcement Learning (EED, SM, YM), pp. 162–169.
- ICML-2003-MannorRG #performance #policy
- The Cross Entropy Method for Fast Policy Search (SM, RYR, YG), pp. 512–519.
- ICML-2001-EngelM #embedded #learning #markov #process
- Learning Embedded Maps of Markov Processes (YE, SM), pp. 138–145.