BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Australia
1 × Finland
1 × Germany
1 × Greece
1 × Italy
13 × USA
2 × Canada
2 × China
Collaborated with:
A.Niculescu-Mizil J.D.Schaffer Y.Lou J.Gehrke D.Freitag N.Nguyen S.Baluja D.Sorokina M.Riedewald D.Fink Y.Ganjisaffar C.V.Lopes N.Karampatziakis A.Yessenalina C.Bucila L.J.Eshelman G.Hooker G.Crew A.Ksikes J.O'Sullivan J.Langford A.Blum T.Kulesza S.Amershi D.Fisher D.X.Charles E.Ipek S.A.McKee B.R.d.Supinski M.Schulz A.L.Berger D.Cohn V.O.Mittal P.Koch M.Sturm N.Elhadad M.F.Elhawary A.Munson W.M.Hochachka S.Kelling
Talks about:
model (8) learn (8) algorithm (6) supervis (4) predict (4) genet (4) intellig (3) empir (3) bias (3) represent (2)

Person: Rich Caruana

DBLP DBLP: Caruana:Rich

Facilitated 1 volumes:

KDD 2007Ed

Contributed to:

KDD 20152015
CHI 20142014
CIKM 20132013
KDD 20132013
KDD 20122012
SIGIR 20112011
ICML 20082008
KDD 20082008
ASPLOS 20062006
ICML 20062006
KDD 20062006
ICML 20052005
ICML 20042004
KDD 20042004
ICML 20002000
SIGIR 20002000
ICML 19961996
ICML 19951995
ICML 19941994
ICML 19931993
ML 19891989
ML 19881988

Wrote 24 papers:

KDD-2015-CaruanaLGKSE #modelling #predict
Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission (RC, YL, JG, PK, MS, NE), pp. 1721–1730.
CHI-2014-KuleszaACFC #concept #evolution #machine learning
Structured labeling for facilitating concept evolution in machine learning (TK, SA, RC, DF, DXC), pp. 3075–3084.
CIKM-2013-Caruana #approximate #clustering #named #question
Clustering: probably approximately useless? (RC), pp. 1259–1260.
KDD-2013-LouCGH #interactive #modelling
Accurate intelligible models with pairwise interactions (YL, RC, JG, GH), pp. 623–631.
KDD-2012-LouCG #classification #modelling
Intelligible models for classification and regression (YL, RC, JG), pp. 150–158.
SIGIR-2011-GanjisaffarCL #modelling #precise #ranking
Bagging gradient-boosted trees for high precision, low variance ranking models (YG, RC, CVL), pp. 85–94.
ICML-2008-CaruanaKY #empirical #evaluation #learning
An empirical evaluation of supervised learning in high dimensions (RC, NK, AY), pp. 96–103.
ICML-2008-SorokinaCRF #detection #interactive #statistics
Detecting statistical interactions with additive groves of trees (DS, RC, MR, DF), pp. 1000–1007.
KDD-2008-NguyenC #classification
Classification with partial labels (NN, RC), pp. 551–559.
ASPLOS-2006-IpekMCSS #architecture #design #modelling #predict
Efficiently exploring architectural design spaces via predictive modeling (EI, SAM, RC, BRdS, MS), pp. 195–206.
ICML-2006-CaruanaN #algorithm #comparison #empirical #learning
An empirical comparison of supervised learning algorithms (RC, ANM), pp. 161–168.
KDD-2006-BucilaCN
Model compression (CB, RC, ANM), pp. 535–541.
KDD-2006-CaruanaEMRSFHK #mining #predict
Mining citizen science data to predict orevalence of wild bird species (RC, MFE, AM, MR, DS, DF, WMH, SK), pp. 909–915.
ICML-2005-Niculescu-MizilC #learning #predict
Predicting good probabilities with supervised learning (ANM, RC), pp. 625–632.
ICML-2004-CaruanaNCK #library #modelling
Ensemble selection from libraries of models (RC, ANM, GC, AK).
KDD-2004-CaruanaN #analysis #data mining #empirical #learning #metric #mining #performance
Data mining in metric space: an empirical analysis of supervised learning performance criteria (RC, ANM), pp. 69–78.
ICML-2000-OSullivanLCB #algorithm #named #robust
FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness (JO, JL, RC, AB), pp. 703–710.
SIGIR-2000-BergerCCFM #statistics
Bridging the lexical chasm: statistical approaches to answer-finding (ALB, RC, DC, DF, VOM), pp. 192–199.
ICML-1996-Caruana #algorithm #learning #multi
Algorithms and Applications for Multitask Learning (RC), pp. 87–95.
ICML-1995-BalujaC #algorithm #search-based #standard
Removing the Genetics from the Standard Genetic Algorithm (SB, RC), pp. 38–46.
ICML-1994-CaruanaF
Greedy Attribute Selection (RC, DF), pp. 28–36.
ICML-1993-Caruana #bias #induction #knowledge-based #learning #multi
Multitask Learning: A Knowledge-Based Source of Inductive Bias (RC), pp. 41–48.
ML-1989-CaruanaSE #algorithm #bias #induction #multi #search-based #using
Using Multiple Representations to Improve Inductive Bias: Gray and Binary Coding for Genetic Algorithms (RC, JDS, LJE), pp. 375–378.
ML-1988-CaruanaS #algorithm #bias #representation #search-based
Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms (RC, JDS), pp. 153–161.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.