BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
bay (33)
classifi (20)
bayesian (14)
classif (8)
learn (8)

Stem naiv$ (all stems)

55 papers:

ICMLICML-2015-Betancourt #monte carlo #scalability
The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and Naive Data Subsampling (MB), pp. 533–540.
ICPRICPR-2014-FornoniC #learning #naive bayes #recognition
Scene Recognition with Naive Bayes Non-linear Learning (MF, BC), pp. 3404–3409.
PODSPODS-2013-GheerbrantLS #evaluation #question
When is naive evaluation possible? (AG, LL, CS), pp. 75–86.
CIKMCIKM-2012-ChenW #automation #classification #naive bayes
Automated feature weighting in naive bayes for high-dimensional data classification (LC, SW), pp. 1243–1252.
SIGIRSIGIR-2012-NunzioS #classification #data analysis #naive bayes #visual notation
A visual tool for bayesian data analysis: the impact of smoothing on naive bayes text classifiers (GMDN, AS), p. 1002.
CIKMCIKM-2011-TomasevRMI #approach #classification #nearest neighbour #probability
A probabilistic approach to nearest-neighbor classification: naive hubness bayesian kNN (NT, MR, DM, MI), pp. 2173–2176.
ICMLICML-2011-SuSM #classification #multi #naive bayes #scalability #using
Large Scale Text Classification using Semisupervised Multinomial Naive Bayes (JS, JSS, SM), pp. 97–104.
KDIRKDIR-2011-MohammadzadehGSN #documentation #web
Extracting the Main Content of Web Documents based on a Naive Smoothing Method (HM, TG, FS, GN), pp. 470–475.
ECSAECSA-2010-HeeschA #architecture #bibliography #comprehension #process #reasoning #student
Naive Architecting — Understanding the Reasoning Process of Students — A Descriptive Survey (UvH, PA), pp. 24–37.
FLOPSFLOPS-2010-SeidelV #automation #generative #theorem
Automatically Generating Counterexamples to Naive Free Theorems (DS, JV), pp. 175–190.
ICPRICPR-2010-FuLTZ #classification #learning #music #naive bayes #retrieval
Learning Naive Bayes Classifiers for Music Classification and Retrieval (ZF, GL, KMT, DZ), pp. 4589–4592.
ICPRICPR-2010-GodecLSB #naive bayes #online #random
On-Line Random Naive Bayes for Tracking (MG, CL, AS, HB), pp. 3545–3548.
SIGIRSIGIR-2010-HagenPSB #power of #query #segmentation
The power of naive query segmentation (MH, MP, BS, CB), pp. 797–798.
VLDBVLDB-2009-MozafariZ #classification #naive bayes #privacy
Publishing Naive Bayesian Classifiers: Privacy without Accuracy Loss (BM, CZ), pp. 1173–1185.
ECIRECIR-2009-TanCWX #adaptation #analysis #naive bayes #sentiment
Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis (ST, XC, YW, HX), pp. 337–349.
SIGIRSIGIR-2008-HueteCFR #modelling #naive bayes #representation
Hierarchical naive bayes models for representing user profiles (JFH, LMdC, JMFL, MARM), pp. 711–712.
ECIRECIR-2007-HeD #classification #naive bayes #using
Improving Naive Bayes Text Classifier Using Smoothing Methods (FH, XD), pp. 703–707.
RecSysRecSys-2007-PronkVPT #classification #naive bayes #recommendation
Incorporating user control into recommender systems based on naive bayesian classification (VP, WFJV, AP, MT), pp. 73–80.
PADLPADL-2007-MorimotoTI #performance
Instantly Turning a Naive Exhaustive Search into Three Efficient Searches with Pruning (TM, YT, HI), pp. 65–79.
SACSAC-2007-JinLSB #automation #categorisation #naive bayes #web
Automatic web pages categorization with ReliefF and Hidden Naive Bayes (XJ, RL, XS, RB), pp. 617–621.
ECIRECIR-2006-YinP #adaptation #classification #naive bayes #rank
Adapting the Naive Bayes Classifier to Rank Procedural Texts (LY, RP), pp. 179–190.
ICMLICML-2006-DenisMR #classification #learning #naive bayes #performance
Efficient learning of Naive Bayes classifiers under class-conditional classification noise (FD, CNM, LR), pp. 265–272.
ICPRICPR-v3-2006-BeveridgeSR #classification #comparison #detection #naive bayes #using
A Comparison of Pixel, Edge andWavelet Features for Face Detection using a Semi-Naive Bayesian Classifier (JRB, JS, BR), pp. 1175–1178.
ICPRICPR-v3-2006-Martinez-ArroyoS #classification #learning #naive bayes
Learning an Optimal Naive Bayes Classifier (MMA, LES), pp. 1236–1239.
ICPRICPR-v4-2006-Martinez-ArroyoS06a #classification #learning #naive bayes
Learning an Optimal Naive Bayes Classifier (MMA, LES), p. 958.
ICMLICML-2005-JingPR #classification #learning #naive bayes #network #performance
Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes (YJ, VP, JMR), pp. 369–376.
ICMLICML-2005-LowdD #estimation #modelling #naive bayes #probability
Naive Bayes models for probability estimation (DL, PMD), pp. 529–536.
ICMLICML-2005-ZhangJS #naive bayes #ranking
Augmenting naive Bayes for ranking (HZ, LJ, JS), pp. 1020–1027.
KDDKDD-2005-Kolcz #classification #naive bayes
Local sparsity control for naive Bayes with extreme misclassification costs (AK), pp. 128–137.
SACSAC-2005-HanXZG #ambiguity #naive bayes
A hierarchical naive Bayes mixture model for name disambiguation in author citations (HH, WX, HZ, CLG), pp. 1065–1069.
ICPRICPR-v3-2004-SotocaSP #multi #naive bayes #set #using
Attribute Relevance in Multiclass Data Sets Using the Naive Bayes Rule (JMS, JSS, FP), pp. 426–429.
KDDKDD-2004-PavlovBDKP #classification #clustering #documentation #multi #naive bayes #preprocessor
Document preprocessing for naive Bayes classification and clustering with mixture of multinomials (DP, RB, BD, SK, JP), pp. 829–834.
PPDPPPDP-2004-ZhouSS #evaluation #linear
Semi-naive evaluation in linear tabling (NFZ, YDS, TS), pp. 90–97.
SACSAC-2004-AmorBE #detection #naive bayes
Naive Bayes vs decision trees in intrusion detection systems (NBA, SB, ZE), pp. 420–424.
ECIRECIR-2003-PengS #classification #modelling #n-gram #naive bayes
Combining Naive Bayes and n-Gram Language Models for Text Classification (FP, DS), pp. 335–350.
ICMLICML-2003-CerquidesM #learning #modelling #naive bayes
Tractable Bayesian Learning of Tree Augmented Naive Bayes Models (JC, RLdM), pp. 75–82.
ICMLICML-2003-RennieSTK #classification #naive bayes
Tackling the Poor Assumptions of Naive Bayes Text Classifiers (JDR, LS, JT, DRK), pp. 616–623.
ICMLICML-2002-DashC #classification #naive bayes
Exact model averaging with naive Bayesian classifiers (DD, GFC), pp. 91–98.
ICMLICML-2002-YangW #classification
Non-Disjoint Discretization for Naive-Bayes Classifiers (YY, GIW), pp. 666–673.
ICPRICPR-v1-2002-SebeLCGH #classification #naive bayes #recognition #using
Emotion Recognition Using a Cauchy Naive Bayes Classifier (NS, MSL, IC, AG, TSH), p. 17–?.
ICPRICPR-v2-2002-Keren #identification #naive bayes #using
Painter Identification Using Local Features and Naive Bayes (DK), pp. 474–477.
SIGIRSIGIR-2002-KimRL #classification #estimation #multi #naive bayes #parametricity
A new method of parameter estimation for multinomial naive bayes text classifiers (SBK, HCR, HSL), pp. 391–392.
ICMLICML-2001-ZadroznyE #classification #naive bayes #probability
Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers (BZ, CE), pp. 609–616.
ICMLICML-2001-ZhangL #naive bayes
Learnability of Augmented Naive Bayes in Nonimal Domains (HZ, CXL), pp. 617–623.
ICMLICML-2000-HsuHW #classification #naive bayes #why
Why Discretization Works for Naive Bayesian Classifiers (CNH, HJH, TTW), pp. 399–406.
SIGIRSIGIR-2000-AndroutsopoulosKCS #anti #comparison #email #keyword #naive bayes
An experimental comparison of naive bayesian and keyword-based anti-spam filtering with personal e-mail messages (IA, JK, KC, CDS), pp. 160–167.
SIGIRSIGIR-2000-KimHZ #classification #naive bayes
Text filtering by boosting naive bayes classifiers (YHK, SYH, BTZ), pp. 168–175.
ICMLICML-1999-LangleyS #analysis #classification #naive bayes
Tractable Average-Case Analysis of Naive Bayesian Classifiers (PL, SS), pp. 220–228.
ICMLICML-1999-MladenicG #feature model #naive bayes
Feature Selection for Unbalanced Class Distribution and Naive Bayes (DM, MG), pp. 258–267.
ICMLICML-1999-ZhengWT #lazy evaluation #learning #naive bayes
Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ZZ, GIW, KMT), pp. 493–502.
HCIHCI-SEC-1997-BianchiBMRS #design #interface #modelling
Participatory Interface Design: From Naive Models to Systems (NB, PB, PM, GR, MGS), pp. 573–576.
KDDKDD-1996-Kohavi #classification #hybrid #scalability
Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid (RK), pp. 202–207.
ICLPJICSLP-1996-PettorossiPR #algorithm #deduction #how #specification #string
How to Extend Partial Deduction to Derive the KMP String-Matching Algorithm from a Naive Specification (Poster Abstract) (AP, MP, SR), p. 539.
FMVDME-1990-TarleckiW
A Naive Domain Universe for VDM (AT, MW), pp. 552–579.
ICLPICLP-1986-MahlerSS86 #approach #prolog
A New Approach for Intruducing Prolog to Naive Users (OM, ZS, EYS), pp. 544–551.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.