Travelled to:
1 × Australia
1 × Brazil
1 × China
1 × France
1 × Israel
1 × Singapore
1 × Slovenia
13 × USA
2 × Canada
2 × Germany
2 × United Kingdom
Collaborated with:
D.M.Mimno ∅ G.Druck C.A.Sutton G.S.Mann M.L.Wick C.Pal A.Culotta W.Li X.Wang K.Nigam K.Rohanimanesh F.C.N.Pereira R.Hall N.Ghamrawi N.Roy J.Rennie L.D.Baker K.A.Spackman G.Miklau L.Yao G.B.Huang E.G.Learned-Miller B.M.Kelm R.Bekkerman R.El-Yaniv J.D.Lafferty H.Chang D.Cohn D.Freitag L.H.Ungar K.Schultz X.Zhu D.Pinto X.Wei W.B.Croft R.Rosenfeld T.M.Mitchell A.Y.Ng A.Bakalov H.M.Wallach K.Bellare M.Marzilli
Talks about:
learn (12) model (9) use (9) topic (7) classif (6) condit (5) field (5) data (5) random (4) effici (4)
Person: Andrew McCallum
DBLP: McCallum:Andrew
Facilitated 1 volumes:
Contributed to:
Wrote 42 papers:
- CIKM-2011-DruckM #evaluation #interactive #towards
- Toward interactive training and evaluation (GD, AM), pp. 947–956.
- ICML-2011-WickRBCM #graph #named
- SampleRank: Training Factor Graphs with Atomic Gradients (MLW, KR, KB, AC, AM), pp. 777–784.
- ICML-2010-DruckM #generative #learning #modelling #using
- High-Performance Semi-Supervised Learning using Discriminatively Constrained Generative Models (GD, AM), pp. 319–326.
- VLDB-2010-WickMM #database #graph #probability #scalability
- Scalable Probabilistic Databases with Factor Graphs and MCMC (MLW, AM, GM), pp. 794–804.
- KDD-2009-YaoMM #documentation #model inference #performance #streaming #topic
- Efficient methods for topic model inference on streaming document collections (LY, DMM, AM), pp. 937–946.
- KDD-2008-HallSM #dependence #using
- Unsupervised deduplication using cross-field dependencies (RH, CAS, AM), pp. 310–317.
- KDD-2008-WickRSM #approach
- A unified approach for schema matching, coreference and canonicalization (MLW, KR, KS, AM), pp. 722–730.
- SIGIR-2008-DruckMM #learning #using
- Learning from labeled features using generalized expectation criteria (GD, GSM, AM), pp. 595–602.
- ICDAR-2007-HuangLM #string #using
- Cryptogram Decoding for OCR Using Numerization Strings (GBH, EGLM, AM), pp. 208–212.
- ICML-2007-MannM #learning #robust #scalability
- Simple, robust, scalable semi-supervised learning via expectation regularization (GSM, AM), pp. 593–600.
- ICML-2007-MimnoLM #topic
- Mixtures of hierarchical topics with Pachinko allocation (DMM, WL, AM), pp. 633–640.
- ICML-2007-SuttonM #performance #pseudo #random
- Piecewise pseudolikelihood for efficient training of conditional random fields (CAS, AM), pp. 863–870.
- KDD-2007-CulottaWHMM #adaptation #database #metric #similarity #using
- Canonicalization of database records using adaptive similarity measures (AC, MLW, RH, MM, AM), pp. 201–209.
- KDD-2007-DruckPMZ #classification #generative #hybrid
- Semi-supervised classification with hybrid generative/discriminative methods (GD, CP, AM, XZ), pp. 280–289.
- KDD-2007-MimnoM #modelling
- Expertise modeling for matching papers with reviewers (DMM, AM), pp. 500–509.
- KDD-2007-WangPM #analysis #component
- Generalized component analysis for text with heterogeneous attributes (XW, CP, AM), pp. 794–803.
- ICML-2006-LiM #correlation #modelling #topic
- Pachinko allocation: DAG-structured mixture models of topic correlations (WL, AM), pp. 577–584.
- ICPR-v2-2006-KelmPM #classification #generative #learning #multi
- Combining Generative and Discriminative Methods for Pixel Classification with Multi-Conditional Learning (BMK, CP, AM), pp. 828–832.
- KDD-2006-McCallum #data mining #information management #mining
- Information extraction, data mining and joint inference (AM), p. 835.
- KDD-2006-WangM #roadmap #topic
- Topics over time: a non-Markov continuous-time model of topical trends (XW, AM), pp. 424–433.
- CIKM-2005-CulottaM #multi #relational
- Joint deduplication of multiple record types in relational data (AC, AM), pp. 257–258.
- CIKM-2005-GhamrawiM #classification #multi
- Collective multi-label classification (NG, AM), pp. 195–200.
- ICML-2005-BekkermanEM #clustering #interactive #multi
- Multi-way distributional clustering via pairwise interactions (RB, REY, AM), pp. 41–48.
- ICML-2004-SuttonRM #modelling #probability #random #sequence
- Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data (CAS, KR, AM).
- SIGIR-2003-PintoMWC #random #using
- Table extraction using conditional random fields (DP, AM, XW, WBC), pp. 235–242.
- ICML-2001-LaffertyMP #modelling #probability #random #sequence
- Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data (JDL, AM, FCNP), pp. 282–289.
- ICML-2001-RoyM #estimation #fault #learning #reduction #towards
- Toward Optimal Active Learning through Sampling Estimation of Error Reduction (NR, AM), pp. 441–448.
- ICML-2000-ChangCM #learning
- Learning to Create Customized Authority Lists (HC, DC, AM), pp. 127–134.
- ICML-2000-McCallumFP #information management #markov #modelling #segmentation
- Maximum Entropy Markov Models for Information Extraction and Segmentation (AM, DF, FCNP), pp. 591–598.
- KDD-2000-McCallumNU #clustering #performance #set
- Efficient clustering of high-dimensional data sets with application to reference matching (AM, KN, LHU), pp. 169–178.
- ICML-1999-RennieM #learning #using #web
- Using Reinforcement Learning to Spider the Web Efficiently (JR, AM), pp. 335–343.
- ICML-1998-McCallumN #classification #learning
- Employing EM and Pool-Based Active Learning for Text Classification (AM, KN), pp. 350–358.
- ICML-1998-McCallumRMN #classification
- Improving Text Classification by Shrinkage in a Hierarchy of Classes (AM, RR, TMM, AYN), pp. 359–367.
- SIGIR-1998-BakerM #classification #clustering #word
- Distributional Clustering of Words for Text Classification (LDB, AM), pp. 96–103.
- ICML-1995-McCallum #learning
- Instance-Based Utile Distinctions for Reinforcement Learning with Hidden State (AM), pp. 387–395.
- ICML-1993-McCallum #memory management
- Overcoming Incomplete Perception with Util Distinction Memory (AM), pp. 190–196.
- ML-1992-McCallum #learning #performance #proximity #using
- Using Transitional Proximity for Faster Reinforcement Learning (AM), pp. 316–321.
- ML-1990-McCallumS #algorithm #search-based #using
- Using Genetic Algorithms to Learn Disjunctive Rules from Examples (AM, KAS), pp. 149–152.
- JCDL-2006-MannMM #analysis #metric #topic
- Bibliometric impact measures leveraging topic analysis (GSM, DMM, AM), pp. 65–74.
- JCDL-2007-MimnoM #library #mining
- Mining a digital library for influential authors (DMM, AM), pp. 105–106.
- JCDL-2007-MimnoM07a #learning #library
- Organizing the OCA: learning faceted subjects from a library of digital books (DMM, AM), pp. 376–385.
- JCDL-2012-BakalovMWM #modelling #taxonomy #topic
- Topic models for taxonomies (AB, AM, HMW, DMM), pp. 237–240.