Travelled to:
1 × Australia
1 × Finland
1 × Germany
1 × Israel
1 × Italy
13 × USA
2 × Canada
Collaborated with:
∅ M.G.Lagoudakis L.Li A.L.Strehl T.J.Walsh F.Jiang M.Babes C.Diuk K.Subramanian C.Szepesvári R.Parr C.Painter-Wakefield P.Stone B.Ur V.N.Marivate S.Goschin A.Weinstein M.Wunder A.Cohen G.A.Keim A.R.Cassandra L.P.Kaelbling E.McManus M.P.Y.Ho E.Sodomka E.Hilliard A.Greenwald F.Yaman M.desJardins C.Mesterharm H.Hirsh G.Taylor E.Wiewiora J.Langford S.P.Singh N.K.Jong D.Pardoe R.E.Schapire D.A.McAllester J.A.Csirik L.Brothers J.D.Hollan J.Neilsen S.Stornetta S.P.Abney G.W.Furnas D.E.Egan M.Lesk R.D.Ketchum C.C.Lochbaum J.R.Remde T.K.Landauer J.Ash G.Cohen S.Jalal S.Lichtenberg P.Quiza E.Zhang
Talks about:
learn (17) reinforc (6) model (6) approxim (4) represent (3) general (3) select (3) game (3) base (3) apprenticeship (2)
Person: Michael L. Littman
DBLP: Littman:Michael_L=
Facilitated 1 volumes:
Contributed to:
Wrote 27 papers:
- CHI-2014-UrMHL #programming #smarttech
- Practical trigger-action programming in the smart home (BU, EM, MPYH, MLL), pp. 803–812.
- ICML-c3-2013-GoschinWL
- The Cross-Entropy Method Optimizes for Quantiles (SG, AW, MLL), pp. 1193–1201.
- ICML-c3-2013-SodomkaHLG #game studies #learning #named #probability
- Coco-Q: Learning in Stochastic Games with Side Payments (ES, EH, MLL, AG), pp. 1471–1479.
- HCI-MIIE-2011-AshBCJLLMQUZ #programming
- Scratchable Devices: User-Friendly Programming for Household Appliances (JA, MB, GC, SJ, SL, MLL, VNM, PQ, BU, EZ), pp. 137–146.
- ICML-2011-BabesMLS #learning #multi
- Apprenticeship Learning About Multiple Intentions (MB, VNM, KS, MLL), pp. 897–904.
- ICML-2010-WalshSLD #learning
- Generalizing Apprenticeship Learning across Hypothesis Classes (TJW, KS, MLL, CD), pp. 1119–1126.
- ICML-2010-WunderLB #multi
- Classes of Multiagent Q-learning Dynamics with epsilon-greedy Exploration (MW, MLL, MB), pp. 1167–1174.
- ICML-2008-DiukCL #learning #object-oriented #performance #representation
- An object-oriented representation for efficient reinforcement learning (CD, AC, MLL), pp. 240–247.
- ICML-2008-LiLW #framework #learning #self #what
- Knows what it knows: a framework for self-aware learning (LL, MLL, TJW), pp. 568–575.
- ICML-2008-ParrLTPL #analysis #approximate #feature model #learning #linear #modelling
- An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning (RP, LL, GT, CPW, MLL), pp. 752–759.
- ICML-2008-YamanWLd #approximate #modelling
- Democratic approximation of lexicographic preference models (FY, TJW, MLL, Md), pp. 1200–1207.
- ICML-2007-ParrPLL #approximate #generative
- Analyzing feature generation for value-function approximation (RP, CPW, LL, MLL), pp. 737–744.
- ICML-2006-StrehlLWLL #learning
- PAC model-free reinforcement learning (ALS, LL, EW, JL, MLL), pp. 881–888.
- ICML-2006-StrehlMLH #learning #problem
- Experience-efficient learning in associative bandit problems (ALS, CM, MLL, HH), pp. 889–896.
- ICML-2005-StrehlL #analysis #estimation #modelling
- A theoretical analysis of Model-Based Interval Estimation (ALS, MLL), pp. 856–863.
- ICML-2003-SinghLJPS #learning #predict
- Learning Predictive State Representations (SPS, MLL, NKJ, DP, PS), pp. 712–719.
- ICML-2002-SchapireSMLC #estimation #modelling #nondeterminism #using
- Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation (RES, PS, DAM, MLL, JAC), pp. 546–553.
- ICML-2001-Littman #game studies
- Friend-or-Foe Q-learning in General-Sum Games (MLL), pp. 322–328.
- SAT-2001-LagoudakisL #branch #learning #satisfiability
- Learning to Select Branching Rules in the DPLL Procedure for Satisfiability (MGL, MLL), pp. 344–359.
- ICML-2000-JiangL #approximate #information retrieval
- Approximate Dimension Equalization in Vector-based Information Retrieval (FJ, MLL), pp. 423–430.
- ICML-2000-LagoudakisL #algorithm #learning #using
- Algorithm Selection using Reinforcement Learning (MGL, MLL), pp. 511–518.
- ICML-1998-LittmanJK #corpus #independence #learning #representation
- Learning a Language-Independent Representation for Terms from a Partially Aligned Corpus (MLL, FJ, GAK), pp. 314–322.
- ICML-1996-LittmanS #convergence
- A Generalized Reinforcement-Learning Model: Convergence and Applications (MLL, CS), pp. 310–318.
- ICML-1995-LittmanCK #learning #policy #scalability
- Learning Policies for Partially Observable Environments: Scaling Up (MLL, ARC, LPK), pp. 362–370.
- ICML-1994-Littman #framework #game studies #learning #markov #multi
- Markov Games as a Framework for Multi-Agent Reinforcement Learning (MLL), pp. 157–163.
- CSCW-1992-BrothersHNSAFL #communication
- Supporting Informal Communication via Ephemeral Interest Groups (LB, JDH, JN, SS, SPA, GWF, MLL), pp. 84–90.
- HT-1991-EganLKLRLL #hypermedia #library
- Hypertext for the Electronic Library? CORE Sample Results (DEE, ML, RDK, CCL, JRR, MLL, TKL), pp. 299–312.