115 papers:
- PODS-2015-GrozM #query
- Skyline Queries with Noisy Comparisons (BG, TM), pp. 185–198.
- STOC-2015-LovettZ #difference
- Improved Noisy Population Recovery, and Reverse Bonami-Beckner Inequality for Sparse Functions (SL, JZ), pp. 137–142.
- ECIR-2015-EfremovaGC #classification
- Classification of Historical Notary Acts with Noisy Labels (JE, AMG, TC), pp. 49–54.
- ICML-2015-WangWS #analysis #clustering
- A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data (YW, YXW, AS), pp. 1422–1431.
- ICML-2015-WuGS #combinator #feedback #finite #identification #on the
- On Identifying Good Options under Combinatorially Structured Feedback in Finite Noisy Environments (YW, AG, CS), pp. 1283–1291.
- SIGIR-2015-ChakrabortyGP #corpus #retrieval
- Retrieval from Noisy E-Discovery Corpus in the Absence of Training Data (AC, KG, SKP), pp. 755–758.
- CASE-2014-LeeJMC #framework #identification #recognition #robust
- Iterative identification framework for robust hand-written digit recognition under extremely noisy conditions (HL, SJ, TM, NYC), pp. 728–733.
- CASE-2014-VaskeviciusP0 #locality #low cost #recognition
- Fitting superquadrics in noisy, partial views from a low-cost RGBD sensor for recognition and localization of sacks in autonomous unloading of shipping containers (NV, KP, AB), pp. 255–262.
- FoSSaCS-2014-AlmagorK #synthesis
- Latticed-LTL Synthesis in the Presence of Noisy Inputs (SA, OK), pp. 226–241.
- ICML-c2-2014-WangL #estimation #metric #robust
- Robust Inverse Covariance Estimation under Noisy Measurements (JKW, SdL), pp. 928–936.
- ICPR-2014-LiZSG #image
- Joint Motion Deblurring with Blurred/Noisy Image Pair (HL, YZ, JS, DG), pp. 1020–1024.
- ICPR-2014-PinheiroRCJS #fuzzy #independence #robust #verification
- Type-2 Fuzzy GMMs for Robust Text-Independent Speaker Verification in Noisy Environments (HNBP, TIR, GDCC, IJT, JS), pp. 4531–4536.
- KDIR-2014-ChakrabortyGR #approach #performance #retrieval #word
- A Word Association Based Approach for Improving Retrieval Performance from Noisy OCRed Text (AC, KG, UR), pp. 450–456.
- ICDAR-2013-GerdjikovMN
- Extraction of Spelling Variations from Language Structure for Noisy Text Correction (SG, SM, VN), pp. 324–328.
- ICDAR-2013-WemhoenerYM #multi #using
- Creating an Improved Version Using Noisy OCR from Multiple Editions (DW, IZY, RM), pp. 160–164.
- SIGMOD-2013-LiGC #named #realtime #sequence
- ε-Matching: event processing over noisy sequences in real time (ZL, TG, CXC), pp. 601–612.
- SIGMOD-2013-MoustafaMDG #analysis #declarative #interactive #named #network
- GRDB: a system for declarative and interactive analysis of noisy information networks (WEM, HM, AD, LG), pp. 1085–1088.
- HCI-IMT-2013-KuncMLK #speech
- Speech-Based Text Correction Patterns in Noisy Environment (LK, TM, ML, JK), pp. 59–66.
- CIKM-2013-ChanLKLBR #graph #matrix #using
- Discovering latent blockmodels in sparse and noisy graphs using non-negative matrix factorisation (JC, WL, AK, CL, JB, KR), pp. 811–816.
- CIKM-2013-RothK #modelling #quality
- Feature-based models for improving the quality of noisy training data for relation extraction (BR, DK), pp. 1181–1184.
- CIKM-2013-ShirakawaNHN #metric #probability #semantics #similarity #using #wiki
- Probabilistic semantic similarity measurements for noisy short texts using Wikipedia entities (MS, KN, TH, SN), pp. 903–908.
- ICML-c1-2013-ChenC13a
- Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery (YC, CC), pp. 383–391.
- ICML-c1-2013-Hennig #optimisation #performance #probability
- Fast Probabilistic Optimization from Noisy Gradients (PH), pp. 62–70.
- ICML-c1-2013-WangX #clustering
- Noisy Sparse Subspace Clustering (YXW, HX), pp. 89–97.
- ICML-c3-2013-Busa-FeketeSCWH #adaptation
- Top-k Selection based on Adaptive Sampling of Noisy Preferences (RBF, BS, WC, PW, EH), pp. 1094–1102.
- SAC-2013-KhaniHAB #algorithm #clustering #semistructured data #set
- An algorithm for discovering clusters of different densities or shapes in noisy data sets (FK, MJH, AAA, HB), pp. 144–149.
- DRR-2012-OujiLL #documentation #segmentation
- Comprehensive color segmentation system for noisy digitized documents to enhance text extraction (AO, YL, FL).
- CHI-2012-CasiezRV #interactive
- 1 € filter: a simple speed-based low-pass filter for noisy input in interactive systems (GC, NR, DV), pp. 2527–2530.
- CIKM-2012-QiYZZ #mining #multi
- Mining noisy tagging from multi-label space (ZQ, MY, Z(Z, ZZ), pp. 1925–1929.
- ICML-2012-MnihH #image #learning #semistructured data
- Learning to Label Aerial Images from Noisy Data (VM, GEH), p. 31.
- ICML-2012-YangMJZZ #kernel #learning #multi #probability #programming
- Multiple Kernel Learning from Noisy Labels by Stochastic Programming (TY, MM, RJ, LZ, YZ), p. 21.
- ICPR-2012-CaoCZL #clustering #query
- Locating high-density clusters with noisy queries (CC, SC, CZ, JL), pp. 3537–3540.
- ICPR-2012-Largeteau-SkapinZASK #set
- Optimal consensus set and preimage of 4-connected circles in a noisy environment (GLS, RZ, EA, AS, YK), pp. 3774–3777.
- ICPR-2012-MadabusiG #detection #image
- Edge detection for facial images under noisy conditions (SM, SVG), pp. 2689–2693.
- ICPR-2012-ZhaoSS #learning #predict
- Importance-weighted label prediction for active learning with noisy annotations (LZ, GS, RS), pp. 3476–3479.
- ICDAR-2011-ChenL #detection #documentation
- Table Detection in Noisy Off-line Handwritten Documents (JC, DPL), pp. 399–403.
- ICDAR-2011-ChenL11a #algorithm #detection #documentation #modelling
- A Model-Based Ruling Line Detection Algorithm for Noisy Handwritten Documents (JC, DPL), pp. 404–408.
- ICDAR-2011-OujiLL #documentation #image
- Chromatic / Achromatic Separation in Noisy Document Images (AO, YL, FL), pp. 167–171.
- FoSSaCS-2011-VelnerR #problem #synthesis
- Church Synthesis Problem for Noisy Input (YV, AR), pp. 275–289.
- ICEIS-J-2011-Li11f #analysis #approach #case study #machine learning #type system #using
- A Study on Noisy Typing Stream Analysis Using Machine Learning Approach (JL0), pp. 149–161.
- ICML-2011-AgarwalNW #composition #matrix
- Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions (AA, SN, MJW), pp. 1129–1136.
- ICML-2011-ZhouT #composition #matrix #named #random
- GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case (TZ, DT), pp. 33–40.
- SIGIR-2011-KumarL #learning #rank
- Learning to rank from a noisy crowd (AK, ML), pp. 1221–1222.
- DRR-2010-LiuZ #detection #documentation #image #learning
- Semi-supervised learning for detecting text-lines in noisy document images (ZL, HZ), pp. 1–10.
- ICML-2010-YangJJ #learning
- Learning from Noisy Side Information by Generalized Maximum Entropy Model (TY, RJ, AKJ), pp. 1199–1206.
- ICPR-2010-Nolazco-FloresLG #automation #recognition #speech
- Speech Magnitude-Spectrum Information-Entropy (MSIE) for Automatic Speech Recognition in Noisy Environments (JANF, RAAL, LPGP), pp. 4364–4367.
- ICPR-2010-TawariT #analysis #speech
- Speech Emotion Analysis in Noisy Real-World Environment (AT, MMT), pp. 4605–4608.
- SAC-2010-ChoePR #estimation
- Dispatching AGVs with noisy estimation of crane operation time (RC, TP, KRR), pp. 1288–1293.
- DAC-2009-ZhangS #estimation #using
- Accurate temperature estimation using noisy thermal sensors (YZ, AS), pp. 472–477.
- HT-2009-WangC #analysis #web
- Use noisy link analysis to improve web search (YW, JC), pp. 377–378.
- ICDAR-2009-LecerfC #documentation #feature model #scalability
- Scalable Feature Extraction from Noisy Documents (LL, BC), pp. 361–365.
- ICML-2009-DeodharGGCD #clustering #framework #scalability #semistructured data
- A scalable framework for discovering coherent co-clusters in noisy data (MD, GG, JG, HC, ISD), pp. 241–248.
- ICML-2009-YuilleZ #composition #learning
- Compositional noisy-logical learning (ALY, SZ), pp. 1209–1216.
- MLDM-2009-LiHLG #concept #detection #random #streaming
- Concept Drifting Detection on Noisy Streaming Data in Random Ensemble Decision Trees (PPL, XH, QL, YG), pp. 236–250.
- ICPR-2008-HuynhH #estimation #recursion #sequence #video
- Recursive structure and motion estimation from noisy uncalibrated video sequences (DQH, AH), pp. 1–5.
- KDD-2008-ShengPI #data mining #mining #multi #quality #using
- Get another label? improving data quality and data mining using multiple, noisy labelers (VSS, FJP, PGI), pp. 614–622.
- ICDAR-2007-ChenW #documentation #image #kernel
- Exploiting Fisher Kernels in Decoding Severely Noisy Document Images (JC, YW), pp. 417–421.
- ICML-2007-MylonakisSH #estimation #modelling
- Unsupervised estimation for noisy-channel models (MM, KS, RH), pp. 665–672.
- ICML-2007-ParkerFT #learning #performance #query #retrieval
- Learning for efficient retrieval of structured data with noisy queries (CP, AF, PT), pp. 729–736.
- SAC-2007-LiuMB #approach #clustering
- A clustering entropy-driven approach for exploring and exploiting noisy functions (SHL, MM, BRB), pp. 738–742.
- CIKM-2006-ShiN #adaptation #corpus #information retrieval #parallel
- Filtering or adapting: two strategies to exploit noisy parallel corpora for cross-language information retrieval (LS, JYN), pp. 814–815.
- ICPR-v1-2006-TongT #3d #multi #re-engineering #set
- Multiresolution Mesh Reconstruction from Noisy 3D Point Sets (WST, CKT), pp. 5–8.
- ICPR-v2-2006-ZhouBS #image #using
- Extracting Lines in Noisy Image Using Directional Information (JZ, WFB, GASA), pp. 215–218.
- ICPR-v4-2006-ProencaA #identification #image #normalisation
- A Method for the Identification of Noisy Regions in Normalized Iris Images (HP, LAA), pp. 405–408.
- DATE-2005-NazarianPTLA #analysis #modelling
- Modeling and Propagation of Noisy Waveforms in Static Timing Analysis (SN, MP, ET, TL, AHA), pp. 776–777.
- ICALP-2005-AsarinC #turing machine
- Noisy Turing Machines (EA, PC), pp. 1031–1042.
- ICML-2005-RamakrishnanCKB #approximate #classification
- A model for handling approximate, noisy or incomplete labeling in text classification (GR, KPC, RK, PB), pp. 681–688.
- SAC-2005-Lopresti #evaluation #performance
- Performance evaluation for text processing of noisy inputs (DPL), pp. 759–763.
- SIGMOD-2004-QianZZ #approach #clustering #effectiveness #named #performance
- FAÇADE: A Fast and Effective Approach to the Discovery of Dense Clusters in Noisy Spatial Data (YQ, GZ, KZ), pp. 921–922.
- CIAA-2004-KariKS
- Substitutions, Trajectories and Noisy Channels (LK, SK, PS), pp. 202–212.
- ICPR-v2-2004-Vinciarelli #categorisation
- Noisy Text Categorization (AV), pp. 554–557.
- SAC-2004-AvilaL #algorithm #documentation
- A new algorithm for removing noisy borders from monochromatic documents (BTÁ, RDL), pp. 1219–1225.
- DATE-2003-CaldariCCMGOT #modelling
- SystemC Modeling of a Bluetooth Transceiver: Dynamic Management of Packet Type in a Noisy Channel (MC, MC, PC, GM, FDG, SO, CT), pp. 20214–20219.
- ICDAR-2003-LucasPD #image #performance #recognition #word
- Fast Lexicon-Based Word Recognition in Noisy Index Card Images (SML, GP, ACD), pp. 462–466.
- ICDAR-2003-ZhengLD03a #documentation #identification #image #markov #random #using
- Text Identification in Noisy Document Images Using Markov Random Field (YZ, HL, DSD), p. 599–?.
- STOC-2003-CoppersmithS #higher-order #semistructured data
- Reconstructing curves in three (and higher) dimensional space from noisy data (DC, MS), pp. 136–142.
- ICALP-2003-BleichenbacherKY #semistructured data
- Decoding of Interleaved Reed Solomon Codes over Noisy Data (DB, AK, MY), pp. 97–108.
- ICEIS-v2-2003-BendouM #learning #network #semistructured data
- Learning Bayesian Networks From Noisy Data (MB, PM), pp. 26–33.
- ECIR-2003-AunimoHKMPV #semistructured data
- Question Answering System for Incomplete and Noisy Data (LA, OH, RK, JM, RP, OV), pp. 193–206.
- ICML-2003-GeibelW #learning
- Perceptron Based Learning with Example Dependent and Noisy Costs (PG, FW), pp. 218–225.
- ICML-2003-Graepel #difference #equation #linear #process
- Solving Noisy Linear Operator Equations by Gaussian Processes: Application to Ordinary and Partial Differential Equations (TG), pp. 234–241.
- ICML-2003-SebbanJ #approach #grammar inference #on the #semistructured data #statistics
- On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data (MS, JCJ), pp. 688–695.
- KDD-2003-YiLL #data mining #mining #web
- Eliminating noisy information in Web pages for data mining (LY, BL, XL), pp. 296–305.
- SIGMOD-2002-YangWYH #mining
- Mining long sequential patterns in a noisy environment (JY, WW, PSY, JH), pp. 406–417.
- STOC-2002-AroraK #algebra #semistructured data
- Fitting algebraic curves to noisy data (SA, SK), pp. 162–169.
- ICPR-v4-2002-IbrahimovSD #analysis #clustering #performance #similarity #topic
- The Performance Analysis of a Chi-square Similarity Measure for Topic Related Clustering of Noisy Transcripts (OI, IKS, ND), pp. 285–288.
- SAC-2002-CarlssonJ #difference #game studies
- Differences between the iterated prisoner’s dilemma and the chicken game under noisy conditions (BC, KIJ), pp. 42–48.
- CIKM-2001-Collins-ThompsonSD #string
- Improved String Matching Under Noisy Channel Conditions (KCT, CS, STD), pp. 357–364.
- ICML-2001-Jiang #aspect-oriented #semistructured data
- Some Theoretical Aspects of Boosting in the Presence of Noisy Data (WJ), pp. 234–241.
- ICML-2001-KriegerLW #semistructured data
- Boosting Noisy Data (AK, CL, AJW), pp. 274–281.
- ICML-2000-AndersonMC #approach #optimisation #parametricity
- A Nonparametric Approach to Noisy and Costly Optimization (BSA, AWM, DC), pp. 17–24.
- ICML-2000-Eskin #detection #probability #semistructured data #using
- Anomaly Detection over Noisy Data using Learned Probability Distributions (EE), pp. 255–262.
- ICML-2000-TowellPM #learning
- Learning Priorities From Noisy Examples (GGT, TP, MRM), pp. 1031–1038.
- ICML-2000-ZupanBBD #concept #induction #semistructured data
- Induction of Concept Hierarchies from Noisy Data (BZ, IB, MB, JD), pp. 1199–1206.
- ICPR-v1-2000-Brauer-BurchardtV #image #robust
- Robust Vanishing Point Determination in Noisy Images (CBB, KV), pp. 1559–1562.
- ICPR-v3-2000-CohenD #estimation #image
- Motion Estimation in Noisy Ultrasound Images by Maximum Likelihood (BC, ID), pp. 3186–3189.
- ICPR-v3-2000-DekeyserBPP #2d #image #parametricity #sequence
- Super-Resolution from Noisy Image Sequences Exploiting a 2D Parametric Motion Model (FD, PB, PP, ÉP), pp. 3354–3357.
- ICPR-v4-2000-ChouB #image #locality
- Accurate Localization of Edges in Noisy Volume Images (PcC, MB), pp. 4760–4763.
- ICPR-v4-2000-Lopez-de-TeruelRG #algorithm #image #parallel
- A Parallel Algorithm for Tracking of Segments in Noisy Edge Images (PELdT, AR, JMG), pp. 4807–4811.
- ICDAR-1999-NegishiKHW #automation
- Character Extraction from Noisy Background for an Automatic Reference System (HN, JK, HH, TW), pp. 143–146.
- ICML-1999-Teng #semistructured data
- Correcting Noisy Data (CMT), pp. 239–248.
- ICML-1998-MooreSBL #learning #named #optimisation
- Q2: Memory-Based Active Learning for Optimizing Noisy Continuous Functions (AWM, JGS, JAB, MSL), pp. 386–394.
- ICSE-1998-TesorieroZ #re-engineering
- A Model of Noisy Software Engineering Data (Status Report) (RT, MVZ), pp. 461–464.
- ICDAR-1997-CesariniFGMSS #architecture #recognition
- A Neural-Based Architecture for Spot-Noisy Logo Recognition (FC, EF, MG, SM, JS, GS), pp. 175–179.
- HCI-CC-1997-Vanderheiden97a #architecture #interface
- Use of a Common Table Architecture for Creating Hands Free, Eyes Free, Noisy Environment (Flex-Modal, Flex-Input) Interfaces (GCV), pp. 449–452.
- STOC-1996-EvansP #bound
- Lower Bounds for Noisy Boolean Decision Trees (WSE, NP), pp. 620–628.
- ICML-1996-OkamotoY #analysis #classification #nearest neighbour
- Theoretical Analysis of the Nearest Neighbor Classifier in Noisy Domains (SO, NY), pp. 355–363.
- ICPR-1996-AkhmetshinL #difference #fourier #image #principle #re-engineering
- The reconstruction of signals and images from the noisy Fourier transform phase by means of the generalized difference principle (AMA, IL), pp. 370–375.
- ICPR-1996-ChenY #symmetry #using #visual notation
- Thinning noisy binary patterns using human visual symmetry (YSC, YTY), pp. 146–150.
- ICPR-1996-NetanyahuPRS #detection #image #robust
- Robust detection of road segments in noisy aerial images (NSN, VP, AR, AJS), pp. 151–155.
- KDD-1996-Czyzewski #mining
- Mining Knowledge in Noisy Audio Data (AC), pp. 220–225.
- KDD-1996-Rymon
- SE-Trees Outperform Decision Trees in Noisy Domains (RR), pp. 331–334.
- ML-1991-DzeroskiL #comparison #empirical #learning
- Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL (SD, NL), pp. 399–402.
- ML-1991-PachowiczB #concept #effectiveness #recognition
- Improving Recognition Effectiveness of Noisy Texture Concepts (PP, JWB), pp. 625–629.
- ML-1988-TanE #classification #network #using
- Using Weighted Networks to Represent Classification Knowledge in Noisy Domains (MT, LJE), pp. 121–134.