Doina Precup, Yee Whye Teh
Proceedings of the 34th International Conference on Machine Learning
ICML, 2017.
@proceedings{ICML-2017,
editor = "Doina Precup and Yee Whye Teh",
ee = "http://proceedings.mlr.press/v70/",
publisher = "{PMLR}",
series = "{Proceedings of Machine Learning Research}",
title = "{Proceedings of the 34th International Conference on Machine Learning}",
volume = 70,
year = 2017,
}
Contents (434 items)
- ICML-2017-AchabBGMM #multi
- Uncovering Causality from Multivariate Hawkes Integrated Cumulants (MA, EB, SG, IM, JFM), pp. 1–10.
- ICML-2017-AcharyaDOS #approach #symmetry
- A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions (JA, HD, AO, ATS), pp. 11–21.
- ICML-2017-AchiamHTA #optimisation #policy
- Constrained Policy Optimization (JA, DH, AT, PA), pp. 22–31.
- ICML-2017-AgarwalS #difference #learning #online #privacy
- The Price of Differential Privacy for Online Learning (NA, KS), pp. 32–40.
- ICML-2017-AkrourS0N #optimisation
- Local Bayesian Optimization of Motor Skills (RA, DS, JP0, GN), pp. 41–50.
- ICML-2017-AksoylarOS #detection
- Connected Subgraph Detection with Mirror Descent on SDPs (CA, LO, VS), pp. 51–59.
- ICML-2017-AlaaHS #learning #process
- Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis (AMA, SH, MvdS), pp. 60–69.
- ICML-2017-AliWK #performance #programming
- A Semismooth Newton Method for Fast, Generic Convex Programming (AA, EW, JZK), pp. 70–79.
- ICML-2017-AllamanisCKS #learning #semantics
- Learning Continuous Semantic Representations of Symbolic Expressions (MA, PC, PK, CAS), pp. 80–88.
- ICML-2017-Allen-Zhu #named #optimisation #parametricity #performance #probability
- Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex Parameter (ZAZ), pp. 89–97.
- ICML-2017-Allen-ZhuL #performance
- Doubly Accelerated Methods for Faster CCA and Generalized Eigendecomposition (ZAZ, YL), pp. 98–106.
- ICML-2017-Allen-ZhuL17a #approximate #component #matrix #performance
- Faster Principal Component Regression and Stable Matrix Chebyshev Approximation (ZAZ, YL), pp. 107–115.
- ICML-2017-Allen-ZhuL17b #learning #online #performance
- Follow the Compressed Leader: Faster Online Learning of Eigenvectors and Faster MMWU (ZAZ, YL), pp. 116–125.
- ICML-2017-Allen-ZhuLSW #design
- Near-Optimal Design of Experiments via Regret Minimization (ZAZ, YL, AS, YW), pp. 126–135.
- ICML-2017-AmosK #named #network #optimisation
- OptNet: Differentiable Optimization as a Layer in Neural Networks (BA, JZK), pp. 136–145.
- ICML-2017-AmosXK #network
- Input Convex Neural Networks (BA, LX, JZK), pp. 146–155.
- ICML-2017-AndersonG #algorithm #approximate #online #performance #rank
- An Efficient, Sparsity-Preserving, Online Algorithm for Low-Rank Approximation (DGA, MG0), pp. 156–165.
- ICML-2017-AndreasKL #composition #learning #multi #policy #sketching
- Modular Multitask Reinforcement Learning with Policy Sketches (JA, DK, SL), pp. 166–175.
- ICML-2017-AnschelBS #learning #named #reduction
- Averaged-DQN: Variance Reduction and Stabilization for Deep Reinforcement Learning (OA, NB, NS), pp. 176–185.
- ICML-2017-AppelP #empirical #framework #multi
- A Simple Multi-Class Boosting Framework with Theoretical Guarantees and Empirical Proficiency (RA, PP), pp. 186–194.
- ICML-2017-ArikCCDGKLMNRSS #realtime
- Deep Voice: Real-time Neural Text-to-Speech (SÖA, MC, AC, GFD, AG, YK, XL, JM, AYN, JR, SS, MS), pp. 195–204.
- ICML-2017-ArjevaniS #complexity #higher-order #problem
- Oracle Complexity of Second-Order Methods for Finite-Sum Problems (YA, OS), pp. 205–213.
- ICML-2017-ArjovskyCB #generative #network
- Wasserstein Generative Adversarial Networks (MA, SC, LB), pp. 214–223.
- ICML-2017-Arora0LMZ #equilibrium #generative
- Generalization and Equilibrium in Generative Adversarial Nets (GANs) (SA, RG0, YL, TM, YZ), pp. 224–232.
- ICML-2017-ArpitJBKBKMFCBL #network
- A Closer Look at Memorization in Deep Networks (DA, SJ, NB, DK, EB, MSK, TM, AF, ACC, YB, SLJ), pp. 233–242.
- ICML-2017-AsadiL #learning
- An Alternative Softmax Operator for Reinforcement Learning (KA, MLL), pp. 243–252.
- ICML-2017-AvronKMMVZ #approximate #bound #fourier #kernel #random #statistics
- Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees (HA, MK, CM, CM, AV, AZ), pp. 253–262.
- ICML-2017-AzarOM #bound #learning
- Minimax Regret Bounds for Reinforcement Learning (MGA, IO, RM), pp. 263–272.
- ICML-2017-BachHRR #generative #learning #modelling
- Learning the Structure of Generative Models without Labeled Data (SHB, BDH, AR, CR), pp. 273–282.
- ICML-2017-BachemLH0 #bound #clustering
- Uniform Deviation Bounds for k-Means Clustering (OB, ML, SHH, AK0), pp. 283–291.
- ICML-2017-BachemL0 #constant #distributed
- Distributed and Provably Good Seedings for k-Means in Constant Rounds (OB, ML, AK0), pp. 292–300.
- ICML-2017-BachmanST #algorithm #learning
- Learning Algorithms for Active Learning (PB, AS, AT), pp. 301–310.
- ICML-2017-BackursT #algorithm #clique #performance
- Improving Viterbi is Hard: Better Runtimes Imply Faster Clique Algorithms (AB, CT), pp. 311–321.
- ICML-2017-BalcanDLMZ #clustering
- Differentially Private Clustering in High-Dimensional Euclidean Spaces (MFB, TD, YL, WM, HZ0), pp. 322–331.
- ICML-2017-Balduzzi
- Strongly-Typed Agents are Guaranteed to Interact Safely (DB), pp. 332–341.
- ICML-2017-BalduzziFLLMM #problem #question #what
- The Shattered Gradients Problem: If resnets are the answer, then what is the question? (DB, MF, LL, JPL, KWDM, BM), pp. 342–350.
- ICML-2017-BalduzziMB #approximate #convergence #network
- Neural Taylor Approximations: Convergence and Exploration in Rectifier Networks (DB, BM, TBY), pp. 351–360.
- ICML-2017-BalleM #finite #learning #policy
- Spectral Learning from a Single Trajectory under Finite-State Policies (BB, OAM), pp. 361–370.
- ICML-2017-BalogTGW
- Lost Relatives of the Gumbel Trick (MB, NT, ZG, AW), pp. 371–379.
- ICML-2017-BamlerM #word
- Dynamic Word Embeddings (RB, SM), pp. 380–389.
- ICML-2017-BaramACM #learning
- End-to-End Differentiable Adversarial Imitation Learning (NB, OA, IC, SM), pp. 390–399.
- ICML-2017-BarmannPS #learning #online #optimisation
- Emulating the Expert: Inverse Optimization through Online Learning (AB, SP, OS), pp. 400–410.
- ICML-2017-BeckhamP #classification #probability
- Unimodal Probability Distributions for Deep Ordinal Classification (CB, CJP), pp. 411–419.
- ICML-2017-BegonJG
- Globally Induced Forest: A Prepruning Compression Scheme (JMB, AJ, PG), pp. 420–428.
- ICML-2017-BelangerYM #energy #learning #network #predict
- End-to-End Learning for Structured Prediction Energy Networks (DB, BY, AM), pp. 429–439.
- ICML-2017-BelilovskyKVB #learning #modelling #visual notation
- Learning to Discover Sparse Graphical Models (EB, KK, GV, MBB), pp. 440–448.
- ICML-2017-BellemareDM #learning
- A Distributional Perspective on Reinforcement Learning (MGB, WD, RM), pp. 449–458.
- ICML-2017-BelloZVL #learning
- Neural Optimizer Search with Reinforcement Learning (IB, BZ, VV, QVL), pp. 459–468.
- ICML-2017-BergmannJV #learning
- Learning Texture Manifolds with the Periodic Spatial GAN (UB, NJ, RV), pp. 469–477.
- ICML-2017-BernsteinMSSHM #learning #modelling #using #visual notation
- Differentially Private Learning of Undirected Graphical Models Using Collective Graphical Models (GB, RM, TS, DS, MH, GM), pp. 478–487.
- ICML-2017-BeygelzimerOZ #learning #multi #online #performance
- Efficient Online Bandit Multiclass Learning with Õ(√T) Regret (AB, FO, CZ), pp. 488–497.
- ICML-2017-BianB0T
- Guarantees for Greedy Maximization of Non-submodular Functions with Applications (AAB, JMB, AK0, ST), pp. 498–507.
- ICML-2017-BogunovicMSC #approach #clustering #robust
- Robust Submodular Maximization: A Non-Uniform Partitioning Approach (IB, SM, JS, VC), pp. 508–516.
- ICML-2017-BojanowskiJ #learning #predict
- Unsupervised Learning by Predicting Noise (PB, AJ), pp. 517–526.
- ICML-2017-BolukbasiWDS #adaptation #network #performance
- Adaptive Neural Networks for Efficient Inference (TB, JW0, OD, VS), pp. 527–536.
- ICML-2017-BoraJPD #generative #modelling #using
- Compressed Sensing using Generative Models (AB, AJ, EP, AGD), pp. 537–546.
- ICML-2017-BosnjakRNR #interpreter #programming
- Programming with a Differentiable Forth Interpreter (MB, TR, JN, SR0), pp. 547–556.
- ICML-2017-BotevRB #learning #optimisation
- Practical Gauss-Newton Optimisation for Deep Learning (AB, HR, DB), pp. 557–565.
- ICML-2017-BraunPZ #algorithm
- Lazifying Conditional Gradient Algorithms (GB, SP, DZ), pp. 566–575.
- ICML-2017-BravermanFLSY #clustering #data type
- Clustering High Dimensional Dynamic Data Streams (VB, GF, HL, CS, LFY), pp. 576–585.
- ICML-2017-BriolOCCG #kernel #on the #problem
- On the Sampling Problem for Kernel Quadrature (FXB, CJO, JC, WYC, MAG), pp. 586–595.
- ICML-2017-BrownS #convergence #game studies #performance
- Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning (NB, TS), pp. 596–604.
- ICML-2017-BrutzkusG
- Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs (AB, AG), pp. 605–614.
- ICML-2017-BuddenMSCS #multi
- Deep Tensor Convolution on Multicores (DMB, AM, SS, SRC, NS), pp. 615–624.
- ICML-2017-Busa-FeketeSWM #multi #optimisation
- Multi-objective Bandits: Optimizing the Generalized Gini Index (RBF, BS, PW, SM), pp. 625–634.
- ICML-2017-CaiDK #performance #testing
- Priv'IT: Private and Sample Efficient Identity Testing (BC, CD, GK0), pp. 635–644.
- ICML-2017-CalandrielloLV #adaptation #higher-order #kernel #online #optimisation #sketching
- Second-Order Kernel Online Convex Optimization with Adaptive Sketching (DC, AL, MV), pp. 645–653.
- ICML-2017-CarmonDHS #quote
- “Convex Until Proven Guilty”: Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions (YC, JCD, OH, AS), pp. 654–663.
- ICML-2017-CarriereCO #diagrams #kernel #persistent #slicing
- Sliced Wasserstein Kernel for Persistence Diagrams (MC, MC, SO), pp. 664–673.
- ICML-2017-ChangCCCSD #clustering #multi #nondeterminism
- Multiple Clustering Views from Multiple Uncertain Experts (YC, JC, MHC, PJC, EKS, JGD), pp. 674–683.
- ICML-2017-ChaudhryXG #assessment #nondeterminism
- Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference (AC, PX0, QG), pp. 684–693.
- ICML-2017-Chaudhuri0N
- Active Heteroscedastic Regression (KC, PJ0, NN), pp. 694–702.
- ICML-2017-ChebotarHZSSL #learning #modelling
- Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning (YC, KH, MZ, GSS, SS, SL), pp. 703–711.
- ICML-2017-ChenB #estimation #modelling #robust
- Robust Structured Estimation with Single-Index Models (SC, AB), pp. 712–721.
- ICML-2017-ChenC0Z #adaptation #identification #multi
- Adaptive Multiple-Arm Identification (JC, XC0, QZ0, YZ0), pp. 722–730.
- ICML-2017-ChenF
- Dueling Bandits with Weak Regret (BC, PIF), pp. 731–739.
- ICML-2017-ChenGWWYY #np-hard #optimisation
- Strong NP-Hardness for Sparse Optimization with Concave Penalty Functions (YC, DG, MW, ZW, YY, HY), pp. 740–747.
- ICML-2017-ChenHCDLBF #learning
- Learning to Learn without Gradient Descent by Gradient Descent (YC, MWH, SGC, MD, TPL, MB, NdF), pp. 748–756.
- ICML-2017-ChenKB #equation #identification #linear #modelling #testing #using
- Identification and Model Testing in Linear Structural Equation Models using Auxiliary Variables (BC, DK, EB), pp. 757–766.
- ICML-2017-ChenLK #estimation #matrix #performance #towards
- Toward Efficient and Accurate Covariance Matrix Estimation on Compressed Data (XC, MRL, IK), pp. 767–776.
- ICML-2017-ChenYLZ #online #optimisation #performance #scalability
- Online Partial Least Square Optimization: Dropping Convexity for Better Efficiency and Scalability (ZC, LFY, CJL, TZ), pp. 777–786.
- ICML-2017-ChenZLHH #learning
- Learning to Aggregate Ordinal Labels by Maximizing Separating Width (GC, SZ, DL, HH0, PAH), pp. 787–796.
- ICML-2017-CherapanamjeriG #matrix #robust
- Nearly Optimal Robust Matrix Completion (YC, KG, PJ0), pp. 797–805.
- ICML-2017-ChierichettiG0L #algorithm #approximate #rank
- Algorithms for lₚ Low-Rank Approximation (FC, SG, RK0, SL, RP, DPW), pp. 806–814.
- ICML-2017-ChoB #named #network
- MEC: Memory-efficient Convolution for Deep Neural Network (MC, DB), pp. 815–824.
- ICML-2017-ChoiD #on the
- On Relaxing Determinism in Arithmetic Circuits (AC, AD), pp. 825–833.
- ICML-2017-ChouMS #learning #policy #probability #using
- Improving Stochastic Policy Gradients in Continuous Control with Deep Reinforcement Learning using the Beta Distribution (PWC, DM, SAS), pp. 834–843.
- ICML-2017-ChowdhuryG #kernel #multi #on the
- On Kernelized Multi-armed Bandits (SRC, AG), pp. 844–853.
- ICML-2017-CisseBGDU #network #robust
- Parseval Networks: Improving Robustness to Adversarial Examples (MC, PB, EG, YND, NU), pp. 854–863.
- ICML-2017-CongCLZ #adaptation #probability #topic
- Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC (YC, BC0, HL, MZ), pp. 864–873.
- ICML-2017-CortesGKMY #adaptation #learning #named #network
- AdaNet: Adaptive Structural Learning of Artificial Neural Networks (CC, XG, VK, MM, SY), pp. 874–883.
- ICML-2017-CutajarBMF #process #random
- Random Feature Expansions for Deep Gaussian Processes (KC, EVB, PM, MF), pp. 884–893.
- ICML-2017-CuturiB #named
- Soft-DTW: a Differentiable Loss Function for Time-Series (MC, MB), pp. 894–903.
- ICML-2017-CzarneckiSJOVK #comprehension #interface
- Understanding Synthetic Gradients and Decoupled Neural Interfaces (WMC, GS, MJ, SO, OV, KK), pp. 904–912.
- ICML-2017-DaiGKHS #generative #probability
- Stochastic Generative Hashing (BD, RG, SK, NH, LS), pp. 913–922.
- ICML-2017-DaumeKLM
- Logarithmic Time One-Against-Some (HDI, NK, JL0, PM), pp. 923–932.
- ICML-2017-DauphinFAG #modelling #network
- Language Modeling with Gated Convolutional Networks (YND, AF, MA, DG), pp. 933–941.
- ICML-2017-DawsonHM #infinity #markov
- An Infinite Hidden Markov Model With Similarity-Biased Transitions (CRD, CH, CTM), pp. 942–950.
- ICML-2017-DaxbergerL #distributed #optimisation #process
- Distributed Batch Gaussian Process Optimization (EAD, BKHL), pp. 951–960.
- ICML-2017-DembczynskiKKN #analysis #classification #consistency #revisited
- Consistency Analysis for Binary Classification Revisited (KD, WK, OK, NN), pp. 961–969.
- ICML-2017-DempseyMSDGMR #named #predict
- iSurvive: An Interpretable, Event-time Prediction Model for mHealth (WHD, AM, CKS, MLD, DHG, SAM, JMR), pp. 970–979.
- ICML-2017-DengKLR #generative
- Image-to-Markup Generation with Coarse-to-Fine Attention (YD, AK, JL, AMR), pp. 980–989.
- ICML-2017-DevlinUBSMK #learning #named
- RobustFill: Neural Program Learning under Noisy I/O (JD, JU, SB, RS, ArM, PK), pp. 990–998.
- ICML-2017-DiakonikolasKK0 #robust
- Being Robust (in High Dimensions) Can Be Practical (ID, GK0, DMK, JL0, AM, AS), pp. 999–1008.
- ICML-2017-DinhBZM #monte carlo #probability
- Probabilistic Path Hamiltonian Monte Carlo (VD, AB, CZ, FAMI), pp. 1009–1018.
- ICML-2017-DinhPBB
- Sharp Minima Can Generalize For Deep Nets (LD, RP, SB, YB), pp. 1019–1028.
- ICML-2017-Domke #bound
- A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI (JD), pp. 1029–1038.
- ICML-2017-DonahueLM
- Dance Dance Convolution (CD, ZCL, JJM), pp. 1039–1048.
- ICML-2017-DuCLXZ #evaluation #policy #probability #reduction
- Stochastic Variance Reduction Methods for Policy Evaluation (SSD, JC, LL0, LX, DZ), pp. 1049–1058.
- ICML-2017-EcksteinGK #generative #using
- Rule-Enhanced Penalized Regression by Column Generation using Rectangular Maximum Agreement (JE, NG, AK), pp. 1059–1067.
- ICML-2017-EngelRRDNES #synthesis
- Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders (JHE, CR, AR, SD, MN0, DE, KS), pp. 1068–1077.
- ICML-2017-FahandarHC #ranking #statistics
- Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening (MAF, EH, IC), pp. 1078–1087.
- ICML-2017-FalahatgarOPS #ranking
- Maximum Selection and Ranking under Noisy Comparisons (MF, AO, VP, ATS), pp. 1088–1096.
- ICML-2017-FarajtabarYYXTK #process
- Fake News Mitigation via Point Process Based Intervention (MF, JY, XY, HX, RT, EBK, SL0, LS, HZ), pp. 1097–1106.
- ICML-2017-FarinaKS #behaviour #game studies
- Regret Minimization in Behaviorally-Constrained Zero-Sum Games (GF, CK, TS), pp. 1107–1116.
- ICML-2017-FeldmanOR #graph #network #summary
- Coresets for Vector Summarization with Applications to Network Graphs (DF, SO, DR), pp. 1117–1125.
- ICML-2017-FinnAL #adaptation #network #performance
- Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (CF, PA, SL), pp. 1126–1135.
- ICML-2017-FoersterGSCS #architecture #network
- Input Switched Affine Networks: An RNN Architecture Designed for Interpretability (JNF, JG, JSD, JC, DS), pp. 1136–1145.
- ICML-2017-FoersterNFATKW #experience #learning #multi
- Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning (JNF, NN, GF, TA, PHST, PK, SW), pp. 1146–1155.
- ICML-2017-ForneyPB #online
- Counterfactual Data-Fusion for Online Reinforcement Learners (AF, JP, EB), pp. 1156–1164.
- ICML-2017-FranceschiDFP #optimisation
- Forward and Reverse Gradient-Based Hyperparameter Optimization (LF, MD, PF, MP), pp. 1165–1173.
- ICML-2017-FutomaHH #classification #detection #learning #multi #process
- Learning to Detect Sepsis with a Multitask Gaussian Process RNN Classifier (JF, SH, KAH), pp. 1174–1182.
- ICML-2017-GalIG #image #learning
- Deep Bayesian Active Learning with Image Data (YG, RI, ZG), pp. 1183–1192.
- ICML-2017-GaoFC #learning #network
- Local-to-Global Bayesian Network Structure Learning (TG, KPF, MC), pp. 1193–1202.
- ICML-2017-GarberSS #algorithm #analysis #component #distributed #probability
- Communication-efficient Algorithms for Distributed Stochastic Principal Component Analysis (DG, OS, NS), pp. 1203–1212.
- ICML-2017-GauntBKT #library #source code
- Differentiable Programs with Neural Libraries (ALG, MB, NK, DT), pp. 1213–1222.
- ICML-2017-GautierBV #performance
- Zonotope Hit-and-run for Efficient Sampling from Projection DPPs (GG, RB, MV), pp. 1223–1232.
- ICML-2017-0001JZ #analysis #geometry #problem #rank
- No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis (RG0, CJ, YZ), pp. 1233–1242.
- ICML-2017-GehringAGYD #learning #sequence
- Convolutional Sequence to Sequence Learning (JG, MA, DG, DY, YND), pp. 1243–1252.
- ICML-2017-GentileLKKZE #clustering #on the
- On Context-Dependent Clustering of Bandits (CG, SL, PK, AK, GZ, EE), pp. 1253–1262.
- ICML-2017-GilmerSRVD #message passing #quantum
- Neural Message Passing for Quantum Chemistry (JG, SSS, PFR, OV, GED), pp. 1263–1272.
- ICML-2017-GoldsteinS #retrieval
- Convex Phase Retrieval without Lifting via PhaseMax (TG, CS), pp. 1273–1281.
- ICML-2017-GonzalezDDL #optimisation
- Preferential Bayesian Optimization (JG, ZD, ACD, NDL), pp. 1282–1291.
- ICML-2017-GorhamM #kernel #quality
- Measuring Sample Quality with Kernels (JG, LWM), pp. 1292–1301.
- ICML-2017-GraveJCGJ #approximate #performance
- Efficient softmax approximation for GPUs (EG, AJ, MC, DG, HJ), pp. 1302–1310.
- ICML-2017-GravesBMMK #automation #education #learning #network
- Automated Curriculum Learning for Neural Networks (AG, MGB, JM, RM, KK), pp. 1311–1320.
- ICML-2017-GuoPSW #network #on the
- On Calibration of Modern Neural Networks (CG, GP, YS0, KQW), pp. 1321–1330.
- ICML-2017-GuptaSGSPKGUV0 #named
- ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices (CG, ASS, AG, HVS, BP, AK, SG, RU, MV, PJ0), pp. 1331–1340.
- ICML-2017-GygliNA #network
- Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs (MG, MN0, AA), pp. 1341–1351.
- ICML-2017-HaarnojaTAL #energy #learning #policy
- Reinforcement Learning with Deep Energy-Based Policies (TH, HT, PA, SL), pp. 1352–1361.
- ICML-2017-HadjeresPN #generative #named
- DeepBach: a Steerable Model for Bach Chorales Generation (GH, FP, FN), pp. 1362–1371.
- ICML-2017-HallakM #consistency #evaluation #online
- Consistent On-Line Off-Policy Evaluation (AH, SM), pp. 1372–1383.
- ICML-2017-HanKPS #performance #process
- Faster Greedy MAP Inference for Determinantal Point Processes (IH, PK, KP, JS), pp. 1384–1393.
- ICML-2017-HannaTSN #behaviour #evaluation #policy
- Data-Efficient Policy Evaluation Through Behavior Policy Search (JPH, PST, PS, SN), pp. 1394–1403.
- ICML-2017-HarandiSH #geometry #learning #metric #reduction
- Joint Dimensionality Reduction and Metric Learning: A Geometric Take (MTH, MS, RIH), pp. 1404–1413.
- ICML-2017-HartfordLLT #approach #flexibility #predict
- Deep IV: A Flexible Approach for Counterfactual Prediction (JSH, GL, KLB, MT), pp. 1414–1423.
- ICML-2017-HassidimS #algorithm #probability #robust
- Robust Guarantees of Stochastic Greedy Algorithms (AH, YS), pp. 1424–1432.
- ICML-2017-HazanSZ #game studies #performance
- Efficient Regret Minimization in Non-Convex Games (EH, KS, CZ), pp. 1433–1441.
- ICML-2017-HeLMWSYR #kernel
- Kernelized Support Tensor Machines (LH0, CTL, GM, SW, LS, PSY, ABR), pp. 1442–1451.
- ICML-2017-HeckelR #collaboration #complexity #online
- The Sample Complexity of Online One-Class Collaborative Filtering (RH, KR), pp. 1452–1460.
- ICML-2017-HenriquesV #performance
- Warped Convolutions: Efficient Invariance to Spatial Transformations (JFH, AV), pp. 1461–1469.
- ICML-2017-Hernandez-Lobato #distributed #parallel #scalability
- Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space (JMHL, JR, EOPK, AAG), pp. 1470–1479.
- ICML-2017-HigginsPRMBPBBL #learning #named
- DARLA: Improving Zero-Shot Transfer in Reinforcement Learning (IH, AP, AAR, LM, CB, AP, MB, CB, AL), pp. 1480–1490.
- ICML-2017-HirayamaHK #named
- SPLICE: Fully Tractable Hierarchical Extension of ICA with Pooling (JH, AH, MK), pp. 1491–1500.
- ICML-2017-HoNYBHP #clustering #multi
- Multilevel Clustering via Wasserstein Means (NH, XN, MY, HHB, VH, DQP), pp. 1501–1509.
- ICML-2017-Hoffman #learning #markov #modelling #monte carlo
- Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo (MDH), pp. 1510–1519.
- ICML-2017-HonerNBMG #detection #robust #trust
- Minimizing Trust Leaks for Robust Sybil Detection (JH, SN, AB0, KRM, NG), pp. 1520–1528.
- ICML-2017-HongHZ #algorithm #distributed #learning #named #network #optimisation #performance
- Prox-PDA: The Proximal Primal-Dual Algorithm for Fast Distributed Nonconvex Optimization and Learning Over Networks (MH, DH, MMZ), pp. 1529–1538.
- ICML-2017-HornakovaLA #analysis #graph #multi #optimisation
- Analysis and Optimization of Graph Decompositions by Lifted Multicuts (AH, JHL, BA), pp. 1539–1548.
- ICML-2017-HuL
- Dissipativity Theory for Nesterov's Accelerated Method (BH, LL), pp. 1549–1557.
- ICML-2017-HuMTMS #learning #self
- Learning Discrete Representations via Information Maximizing Self-Augmented Training (WH, TM, ST, EM, MS), pp. 1558–1567.
- ICML-2017-HuQ #memory management #network
- State-Frequency Memory Recurrent Neural Networks (HH, GJQ), pp. 1568–1577.
- ICML-2017-HuRC #generative #modelling #relational
- Deep Generative Models for Relational Data with Side Information (CH, PR, LC), pp. 1578–1586.
- ICML-2017-HuYLSX #generative #towards
- Toward Controlled Generation of Text (ZH, ZY, XL, RS, EPX), pp. 1587–1596.
- ICML-2017-ImaizumiH #composition
- Tensor Decomposition with Smoothness (MI, KH), pp. 1597–1606.
- ICML-2017-IngrahamM #modelling
- Variational Inference for Sparse and Undirected Models (JI, DSM), pp. 1607–1616.
- ICML-2017-JabbariJKMR #learning
- Fairness in Reinforcement Learning (SJ, MJ, MJK, JM, AR0), pp. 1617–1626.
- ICML-2017-JaderbergCOVGSK #interface #using
- Decoupled Neural Interfaces using Synthetic Gradients (MJ, WMC, SO, OV, AG, DS, KK), pp. 1627–1635.
- ICML-2017-JainMR #generative #learning #modelling #multi #scalability
- Scalable Generative Models for Multi-label Learning with Missing Labels (VJ, NM, PR), pp. 1636–1644.
- ICML-2017-JaquesGBHTE #generative #modelling #sequence
- Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control (NJ, SG, DB, JMHL, RET, DE), pp. 1645–1654.
- ICML-2017-JenattonAGS #dependence #optimisation
- Bayesian Optimization with Tree-structured Dependencies (RJ, CA, JG, MWS), pp. 1655–1664.
- ICML-2017-JerniteCS #classification #estimation #learning
- Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation (YJ, AC, DAS), pp. 1665–1674.
- ICML-2017-JiHS #generative #image #parametricity
- From Patches to Images: A Nonparametric Generative Model (GJ0, MCH, EBS), pp. 1675–1683.
- ICML-2017-Jiang #estimation #set
- Density Level Set Estimation on Manifolds with DBSCAN (HJ), pp. 1684–1693.
- ICML-2017-Jiang17a #convergence #estimation #kernel
- Uniform Convergence Rates for Kernel Density Estimation (HJ), pp. 1694–1703.
- ICML-2017-JiangKALS #process #rank
- Contextual Decision Processes with low Bellman rank are PAC-Learnable (NJ, AK, AA, JL0, RES), pp. 1704–1713.
- ICML-2017-JiangMCSMG #performance
- Efficient Nonmyopic Active Search (SJ, GM, GC, AS, BM, RG), pp. 1714–1723.
- ICML-2017-Jin0NKJ #how
- How to Escape Saddle Points Efficiently (CJ, RG0, PN, SMK, MIJ), pp. 1724–1732.
- ICML-2017-JingSDPSLTS #network #performance
- Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs (LJ, YS, TD, JP, SAS, YL, MT, MS), pp. 1733–1741.
- ICML-2017-Jitkrittum0G #adaptation #independence #kernel
- An Adaptive Test of Independence with Analytic Kernel Embeddings (WJ, ZS0, AG), pp. 1742–1751.
- ICML-2017-JohnsonG #coordination #named
- StingyCD: Safely Avoiding Wasteful Updates in Coordinate Descent (TBJ, CG), pp. 1752–1760.
- ICML-2017-KakizakiFS
- Differentially Private Chi-squared Test by Unit Circle Mechanism (KK, KF, JS), pp. 1761–1770.
- ICML-2017-KalchbrennerOSD #network #video
- Video Pixel Networks (NK, AvdO, KS, ID, OV, AG, KK), pp. 1771–1779.
- ICML-2017-KaleKLP #adaptation #feature model #linear #online #performance
- Adaptive Feature Selection: Computationally Efficient Online Sparse Linear Regression under RIP (SK, ZSK, TL, DP), pp. 1780–1788.
- ICML-2017-Kallus #clustering #personalisation #recursion #using
- Recursive Partitioning for Personalization using Observational Data (NK), pp. 1789–1798.
- ICML-2017-KandasamyDSP #approximate #multi #optimisation
- Multi-fidelity Bayesian Optimisation with Continuous Approximations (KK, GD, JGS, BP), pp. 1799–1808.
- ICML-2017-KanskySMELLDSPG #generative #network #physics
- Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics (KK, TS, DAM, ME, MLG, XL, ND, SS, DSP, DG), pp. 1809–1818.
- ICML-2017-KattOA #learning #monte carlo
- Learning in POMDPs with Monte Carlo Tree Search (SK, FAO, CA), pp. 1819–1827.
- ICML-2017-KearnsRW
- Meritocratic Fairness for Cross-Population Selection (MJK, AR0, ZSW), pp. 1828–1836.
- ICML-2017-KhannaEDGN #approximate #on the #optimisation #rank
- On Approximation Guarantees for Greedy Low Rank Optimization (RK, ERE, AGD, JG, SNN), pp. 1837–1846.
- ICML-2017-KhasanovaF #graph #invariant #learning #representation
- Graph-based Isometry Invariant Representation Learning (RK, PF), pp. 1847–1856.
- ICML-2017-KimCKLK #generative #learning #network
- Learning to Discover Cross-Domain Relations with Generative Adversarial Networks (TK, MC, HK, JKL, JK), pp. 1857–1865.
- ICML-2017-KimPKH #learning #named #network #parallel #parametricity #reduction #semantics
- SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization (JK, YP, GK, SJH), pp. 1866–1874.
- ICML-2017-KocaogluDV #graph #learning
- Cost-Optimal Learning of Causal Graphs (MK, AD, SV), pp. 1875–1884.
- ICML-2017-KohL #black box #comprehension #predict
- Understanding Black-box Predictions via Influence Functions (PWK, PL), pp. 1885–1894.
- ICML-2017-KohlerL #optimisation #polynomial
- Sub-sampled Cubic Regularization for Non-convex Optimization (JMK, AL), pp. 1895–1904.
- ICML-2017-KolesnikovL #image #modelling
- PixelCNN Models with Auxiliary Variables for Natural Image Modeling (AK, CHL), pp. 1905–1914.
- ICML-2017-KrishnamurthyAH #classification #learning
- Active Learning for Cost-Sensitive Classification (AK, AA, TKH, HDI, JL0), pp. 1915–1924.
- ICML-2017-KucukelbirWB #modelling
- Evaluating Bayesian Models with Posterior Dispersion Indices (AK, YW, DMB), pp. 1925–1934.
- ICML-2017-KumarGV #internet #machine learning #ram
- Resource-efficient Machine Learning in 2 KB RAM for the Internet of Things (AK, SG, MV), pp. 1935–1944.
- ICML-2017-KusnerPH
- Grammar Variational Autoencoder (MJK, BP, JMHL), pp. 1945–1954.
- ICML-2017-LaclauRMBB #clustering
- Co-clustering through Optimal Transport (CL, IR, BM, YB, VB), pp. 1955–1964.
- ICML-2017-LanPZZ #lazy evaluation #probability
- Conditional Accelerated Lazy Stochastic Gradient Descent (GL, SP, YZ, DZ), pp. 1965–1974.
- ICML-2017-LattanziV #clustering #consistency
- Consistent k-Clustering (SL, SV), pp. 1975–1984.
- ICML-2017-LawUZ #clustering #learning
- Deep Spectral Clustering Learning (MTL, RU, RSZ), pp. 1985–1994.
- ICML-2017-LeY0L #coordination #learning #multi
- Coordinated Multi-Agent Imitation Learning (HML0, YY, PC0, PL), pp. 1995–2003.
- ICML-2017-LeeHGJC #graph #random
- Bayesian inference on random simple graphs with power law degree distributions (JL, CH, ZG, LFJ, SC), pp. 2004–2013.
- ICML-2017-LeeHPS #learning #multi
- Confident Multiple Choice Learning (KL, CH, KP, JS), pp. 2014–2023.
- ICML-2017-LeiJBJ #architecture #graph #kernel #sequence
- Deriving Neural Architectures from Sequence and Graph Kernels (TL0, WJ, RB, TSJ), pp. 2024–2033.
- ICML-2017-LeiYWDR #coordination #empirical
- Doubly Greedy Primal-Dual Coordinate Descent for Sparse Empirical Risk Minimization (QL, IEHY, CYW, ISD, PR), pp. 2034–2042.
- ICML-2017-LevyW #learning #source code
- Learning to Align the Source Code to the Compiled Object Code (DL, LW), pp. 2043–2051.
- ICML-2017-LiG #network
- Dropout Inference in Bayesian Neural Networks with Alpha-divergences (YL, YG), pp. 2052–2061.
- ICML-2017-LiL #correlation #matrix
- Provable Alternating Gradient Descent for Non-negative Matrix Factorization with Strong Correlations (YL, YL), pp. 2062–2070.
- ICML-2017-LiLZ #algorithm #linear
- Provably Optimal Algorithms for Generalized Linear Contextual Bandits (LL0, YL, DZ), pp. 2071–2080.
- ICML-2017-LiM #nearest neighbour #performance
- Fast k-Nearest Neighbour Search via Prioritized DCI (KL, JM), pp. 2081–2090.
- ICML-2017-LiM17a #robust
- Forest-type Regression with General Losses and Robust Forest (AHL, AM), pp. 2091–2100.
- ICML-2017-LiTE #adaptation #algorithm #equation #probability
- Stochastic Modified Equations and Adaptive Stochastic Gradient Algorithms (QL, CT, WE), pp. 2101–2110.
- ICML-2017-LiZLV #analysis #convergence #optimisation
- Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization (QL, YZ, YL, PKV), pp. 2111–2119.
- ICML-2017-LindgrenDK
- Exact MAP Inference by Avoiding Fractional Vertices (EML, AGD, ARK), pp. 2120–2129.
- ICML-2017-LiporB #clustering
- Leveraging Union of Subspace Structure to Improve Constrained Clustering (JL, LB), pp. 2130–2139.
- ICML-2017-LiuB #exponential #product line
- Zero-Inflated Exponential Family Embeddings (LPL, DMB), pp. 2140–2148.
- ICML-2017-LiuDHTYSRS #education
- Iterative Machine Teaching (WL, BD, AH, CT, CY0, LBS, JMR, LS), pp. 2149–2158.
- ICML-2017-LiuLNT #algorithm #complexity
- Algorithmic Stability and Hypothesis Complexity (TL, GL, GN, DT), pp. 2159–2167.
- ICML-2017-LiuWY #multi
- Analogical Inference for Multi-relational Embeddings (HL, YW, YY), pp. 2168–2178.
- ICML-2017-LiuYWLM
- Dual Iterative Hard Thresholding: From Non-convex Sparse Minimization to Non-smooth Concave Maximization (BL0, XTY, LW, QL0, DNM), pp. 2179–2187.
- ICML-2017-LiuZLS #automation #composition #named #sequence
- Gram-CTC: Automatic Unit Selection and Target Decomposition for Sequence Labelling (HL, ZZ, XL, SS), pp. 2188–2197.
- ICML-2017-LivniCG #infinity #kernel #learning #network
- Learning Infinite Layer Networks Without the Kernel Trick (RL, DC, AG), pp. 2198–2207.
- ICML-2017-LongZ0J #adaptation #learning #network
- Deep Transfer Learning with Joint Adaptation Networks (ML, HZ, JW0, MIJ), pp. 2208–2217.
- ICML-2017-LouizosW #multi #network #normalisation
- Multiplicative Normalizing Flows for Variational Bayesian Neural Networks (CL, MW), pp. 2218–2227.
- ICML-2017-Loukas #how #matrix #question
- How Close Are the Eigenvectors of the Sample and Actual Covariance Matrices? (AL), pp. 2228–2237.
- ICML-2017-Luo #architecture #learning #network
- Learning Deep Architectures via Generalized Whitened Neural Networks (PL0), pp. 2238–2246.
- ICML-2017-LvJL #learning
- Learning Gradient Descent: Better Generalization and Longer Horizons (KL, SJ, JL), pp. 2247–2255.
- ICML-2017-Lyu #approximate #kernel
- Spherical Structured Feature Maps for Kernel Approximation (YL), pp. 2256–2264.
- ICML-2017-MaFF #markov #modelling #probability
- Stochastic Gradient MCMC Methods for Hidden Markov Models (YAM, NJF, EBF), pp. 2265–2274.
- ICML-2017-MaMXLD #self
- Self-Paced Co-training (FM, DM, QX, ZL, XD), pp. 2275–2284.
- ICML-2017-MacGlashanHLPWR #feedback #interactive #learning
- Interactive Learning from Policy-Dependent Human Feedback (JM, MKH, RTL, BP, GW, DLR, MET, MLL), pp. 2285–2294.
- ICML-2017-MachadoBB #framework #learning
- A Laplacian Framework for Option Discovery in Reinforcement Learning (MCM, MGB, MHB), pp. 2295–2304.
- ICML-2017-MairBB
- Frame-based Data Factorizations (SM, AB, UB), pp. 2305–2313.
- ICML-2017-MalherbeV #optimisation
- Global optimization of Lipschitz functions (CM, NV), pp. 2314–2323.
- ICML-2017-MaoSC #matrix #on the #symmetry
- On Mixed Memberships and Symmetric Nonnegative Matrix Factorizations (XM0, PS, DC), pp. 2324–2333.
- ICML-2017-MasegosaNLRSM #data type #modelling
- Bayesian Models of Data Streams with Hierarchical Power Priors (ARM, TDN, HL, DRL, AS, ALM), pp. 2334–2343.
- ICML-2017-MaystreG #approach #effectiveness #exclamation #learning
- Just Sort It! A Simple and Effective Approach to Active Preference Learning (LM, MG), pp. 2344–2353.
- ICML-2017-MaystreG17a #identification #named #network
- ChoiceRank: Identifying Preferences from Node Traffic in Networks (LM, MG), pp. 2354–2362.
- ICML-2017-McGillP #how #network
- Deciding How to Decide: Dynamic Routing in Artificial Neural Networks (MM, PP), pp. 2363–2372.
- ICML-2017-McNamaraB #bound
- Risk Bounds for Transferring Representations With and Without Fine-Tuning (DM, MFB), pp. 2373–2381.
- ICML-2017-MeiCGH #matrix
- Nonnegative Matrix Factorization for Time Series Recovery From a Few Temporal Aggregates (JM, YdC, YG, GH), pp. 2382–2390.
- ICML-2017-MeschederNG #generative #network
- Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks (LMM, SN, AG), pp. 2391–2400.
- ICML-2017-MhammediHRB #network #orthogonal #performance #using
- Efficient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder Reflections (ZM, ADH, AR, JB0), pp. 2401–2409.
- ICML-2017-MiaoGB #topic
- Discovering Discrete Latent Topics with Neural Variational Inference (YM, EG, PB), pp. 2410–2419.
- ICML-2017-MillerFA #approximate
- Variational Boosting: Iteratively Refining Posterior Approximations (ACM, NJF, RPA), pp. 2420–2429.
- ICML-2017-MirhoseiniPLSLZ #learning #optimisation
- Device Placement Optimization with Reinforcement Learning (AM, HP, QVL, BS, RL0, YZ, NK, MN0, SB, JD), pp. 2430–2439.
- ICML-2017-MirrokniLVW #approximate #bound
- Tight Bounds for Approximate Carathéodory and Beyond (VSM, RPL, AV, SCwW), pp. 2440–2448.
- ICML-2017-MirzasoleimanK0 #summary
- Deletion-Robust Submodular Maximization: Data Summarization with “the Right to be Forgotten” (BM, AK, AK0), pp. 2449–2458.
- ICML-2017-MishraAM #modelling #predict
- Prediction and Control with Temporal Segment Models (NM, PA, IM), pp. 2459–2468.
- ICML-2017-MitliagkasM #quality
- Improving Gibbs Sampler Scan Quality with DoGS (IM, LWM), pp. 2469–2477.
- ICML-2017-MitrovicB0K #summary
- Differentially Private Submodular Maximization: Data Summarization in Disguise (MM, MB, AK0, AK), pp. 2478–2487.
- ICML-2017-MohajerSE #learning #rank
- Active Learning for Top-K Rank Aggregation from Noisy Comparisons (SM, CS, AE), pp. 2488–2497.
- ICML-2017-MolchanovAV #network
- Variational Dropout Sparsifies Deep Neural Networks (DM, AA, DPV), pp. 2498–2507.
- ICML-2017-MollaysaSK #modelling #using
- Regularising Non-linear Models Using Feature Side-information (AM, PS, AK), pp. 2508–2517.
- ICML-2017-MouLLJ #distributed #execution #natural language #query #symbolic computation
- Coupling Distributed and Symbolic Execution for Natural Language Queries (LM, ZL, HL0, ZJ), pp. 2518–2526.
- ICML-2017-MrouehSG #named
- McGan: Mean and Covariance Feature Matching GAN (YM, TS, VG), pp. 2527–2535.
- ICML-2017-MuellerGJ #combinator #sequence
- Sequence to Better Sequence: Continuous Revision of Combinatorial Structures (JM, DKG, TSJ), pp. 2536–2544.
- ICML-2017-MukkamalaH #bound
- Variants of RMSProp and Adagrad with Logarithmic Regret Bounds (MCM, MH0), pp. 2545–2553.
- ICML-2017-MunkhdalaiY #network
- Meta Networks (TM, HY0), pp. 2554–2563.
- ICML-2017-NagamineM #case study #comprehension #multi #recognition #representation #speech
- Understanding the Representation and Computation of Multilayer Perceptrons: A Case Study in Speech Recognition (TN, NM), pp. 2564–2573.
- ICML-2017-NamkoongSYD #adaptation #optimisation
- Adaptive Sampling Probabilities for Non-Smooth Optimization (HN, AS, SY, JCD), pp. 2574–2583.
- ICML-2017-NeilLDL #network
- Delta Networks for Optimized Recurrent Network Computation (DN, JL, TD, SCL), pp. 2584–2593.
- ICML-2017-NeiswangerX
- Post-Inference Prior Swapping (WN, EPX), pp. 2594–2602.
- ICML-2017-NguyenH #network
- The Loss Surface of Deep and Wide Neural Networks (QN0, MH0), pp. 2603–2612.
- ICML-2017-NguyenLST #machine learning #named #novel #probability #problem #recursion #using
- SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient (LMN, JL, KS, MT), pp. 2613–2621.
- ICML-2017-NiQWC #clustering #modelling #persistent #visual notation
- Composing Tree Graphical Models with Persistent Homology Features for Clustering Mixed-Type Data (XN, NQ, YW, CC0), pp. 2622–2631.
- ICML-2017-OchiaiWHH #multi #recognition #speech
- Multichannel End-to-end Speech Recognition (TO, SW, TH, JRH), pp. 2632–2641.
- ICML-2017-OdenaOS #classification #image #synthesis
- Conditional Image Synthesis with Auxiliary Classifier GANs (AO, CO, JS), pp. 2642–2651.
- ICML-2017-OglicG #kernel
- Nyström Method with Kernel K-means++ Samples as Landmarks (DO, TG0), pp. 2652–2660.
- ICML-2017-OhSLK #learning #multi
- Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning (JO, SPS, HL, PK), pp. 2661–2670.
- ICML-2017-OlivaPS #statistics
- The Statistical Recurrent Unit (JBO, BP, JGS), pp. 2671–2680.
- ICML-2017-OmidshafieiPAHV #distributed #learning #multi
- Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability (SO, JP, CA, JPH, JV), pp. 2681–2690.
- ICML-2017-OngieWNB #algebra #matrix #modelling #rank
- Algebraic Variety Models for High-Rank Matrix Completion (GO, RW, RDN, LB), pp. 2691–2700.
- ICML-2017-OsbandR #learning #question #why
- Why is Posterior Sampling Better than Optimism for Reinforcement Learning? (IO, BVR), pp. 2701–2710.
- ICML-2017-OsogamiKS #bidirectional #learning #modelling
- Bidirectional Learning for Time-series Models with Hidden Units (TO, HK, TS), pp. 2711–2720.
- ICML-2017-OstrovskiBOM #modelling
- Count-Based Exploration with Neural Density Models (GO, MGB, AvdO, RM), pp. 2721–2730.
- ICML-2017-PadSCTU #learning #taxonomy
- Dictionary Learning Based on Sparse Distribution Tomography (PP, FS, LEC, PT, MU), pp. 2731–2740.
- ICML-2017-PakmanGCP #probability
- Stochastic Bouncy Particle Sampler (AP, DG, DEC, LP), pp. 2741–2750.
- ICML-2017-PallaKG #process
- A Birth-Death Process for Feature Allocation (KP, DAK, ZG), pp. 2751–2759.
- ICML-2017-PanYTB #nondeterminism #predict #process
- Prediction under Uncertainty in Sparse Spectrum Gaussian Processes with Applications to Filtering and Control (YP, XY, EAT, BB), pp. 2760–2768.
- ICML-2017-PanahiDJB #algorithm #clustering #convergence #incremental #probability
- Clustering by Sum of Norms: Stochastic Incremental Algorithm, Convergence and Cluster Recovery (AP, DPD, FDJ, CB), pp. 2769–2777.
- ICML-2017-PathakAED #predict #self
- Curiosity-driven Exploration by Self-supervised Prediction (DP, PA, AAE, TD), pp. 2778–2787.
- ICML-2017-PengZZQ #distributed #process
- Asynchronous Distributed Variational Gaussian Process for Regression (HP, SZ, XZ, YQ), pp. 2788–2797.
- ICML-2017-PenningtonB #geometry #matrix #network #random
- Geometry of Neural Network Loss Surfaces via Random Matrix Theory (JP, YB), pp. 2798–2806.
- ICML-2017-PentinaL #learning #multi
- Multi-task Learning with Labeled and Unlabeled Tasks (AP, CHL), pp. 2807–2816.
- ICML-2017-PintoDSG #learning #robust
- Robust Adversarial Reinforcement Learning (LP, JD, RS, AG0), pp. 2817–2826.
- ICML-2017-PritzelUSBVHWB
- Neural Episodic Control (AP, BU, SS, APB, OV, DH, DW, CB), pp. 2827–2836.
- ICML-2017-RaffelLLWE #linear #online
- Online and Linear-Time Attention by Enforcing Monotonic Alignments (CR, MTL, PJL, RJW, DE), pp. 2837–2846.
- ICML-2017-RaghuPKGS #network #on the #power of
- On the Expressive Power of Deep Neural Networks (MR, BP, JMK, SG, JSD), pp. 2847–2854.
- ICML-2017-RaghunathanVZ #multi
- Estimating the unseen from multiple populations (AR, GV, JZ), pp. 2855–2863.
- ICML-2017-RahmaniA #performance #robust
- Coherence Pursuit: Fast, Simple, and Robust Subspace Recovery (MR, GKA), pp. 2864–2873.
- ICML-2017-RahmaniA17a #approach #clustering #problem
- Innovation Pursuit: A New Approach to the Subspace Clustering Problem (MR, GKA), pp. 2874–2882.
- ICML-2017-RanaL0NV #optimisation #process
- High Dimensional Bayesian Optimization with Elastic Gaussian Process (SR, CL0, SG0, VN0, SV), pp. 2883–2891.
- ICML-2017-RavanbakhshSP
- Equivariance Through Parameter-Sharing (SR, JGS, BP), pp. 2892–2901.
- ICML-2017-RealMSSSTLK #classification #evolution #image #scalability
- Large-Scale Evolution of Image Classifiers (ER, SM, AS, SS, YLS, JT, QVL, AK), pp. 2902–2911.
- ICML-2017-ReedOKCWCBF #estimation #parallel
- Parallel Multiscale Autoregressive Density Estimation (SER, AvdO, NK, SGC, ZW0, YC, DB, NdF), pp. 2912–2921.
- ICML-2017-RippelB #adaptation #image #realtime
- Real-Time Adaptive Image Compression (OR, LDB), pp. 2922–2930.
- ICML-2017-RiquelmeGL #estimation #learning #linear #modelling
- Active Learning for Accurate Estimation of Linear Models (CR, MG, AL), pp. 2931–2939.
- ICML-2017-RitterBSB #bias #case study #network
- Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study (SR, DGTB, AS, MMB), pp. 2940–2949.
- ICML-2017-RubinsteinA #difference #privacy #random
- Pain-Free Random Differential Privacy with Sensitivity Sampling (BIPR, FA), pp. 2950–2959.
- ICML-2017-Ruggieri
- Enumerating Distinct Decision Trees (SR), pp. 2960–2968.
- ICML-2017-RukatHTY #matrix
- Bayesian Boolean Matrix Factorisation (TR, CCH, MKT, CY), pp. 2969–2978.
- ICML-2017-SafranS #approximate #network #trade-off
- Depth-Width Tradeoffs in Approximating Natural Functions with Neural Networks (IS, OS), pp. 2979–2987.
- ICML-2017-SaitoUH #adaptation #symmetry
- Asymmetric Tri-training for Unsupervised Domain Adaptation (KS, YU, TH), pp. 2988–2997.
- ICML-2017-SakaiPNS #classification
- Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data (TS, MCdP, GN, MS), pp. 2998–3006.
- ICML-2017-SakrKS #network #precise
- Analytical Guarantees on Numerical Precision of Deep Neural Networks (CS, YK0, NRS), pp. 3007–3016.
- ICML-2017-SaxeER #composition #multi
- Hierarchy Through Composition with Multitask LMDPs (AMS, ACE, BR), pp. 3017–3026.
- ICML-2017-ScamanBBLM #algorithm #distributed #network #optimisation
- Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks (KS, FRB, SB, YTL, LM), pp. 3027–3036.
- ICML-2017-SchlegelPCW #adaptation #kernel #online #using
- Adapting Kernel Representations Online Using Submodular Maximization (MS, YP, JC, MW), pp. 3037–3046.
- ICML-2017-SelsamLD #machine learning
- Developing Bug-Free Machine Learning Systems With Formal Mathematics (DS, PL, DLD), pp. 3047–3056.
- ICML-2017-SenSDS #identification #online
- Identifying Best Interventions through Online Importance Sampling (RS, KS, AGD, SS), pp. 3057–3066.
- ICML-2017-Shalev-ShwartzS #learning
- Failures of Gradient-Based Deep Learning (SSS, OS, SS), pp. 3067–3075.
- ICML-2017-ShalitJS #algorithm #bound
- Estimating individual treatment effect: generalization bounds and algorithms (US, FDJ, DAS), pp. 3076–3085.
- ICML-2017-ShamirS #feedback #learning #online #permutation
- Online Learning with Local Permutations and Delayed Feedback (OS, LS), pp. 3086–3094.
- ICML-2017-SharanV #algorithm #composition
- Orthogonalized ALS: A Theoretically Principled Tensor Decomposition Algorithm for Practical Use (VS, GV), pp. 3095–3104.
- ICML-2017-Sheffet
- Differentially Private Ordinary Least Squares (OS), pp. 3105–3114.
- ICML-2017-ShenL #complexity #on the
- On the Iteration Complexity of Support Recovery via Hard Thresholding Pursuit (JS0, PL0), pp. 3115–3124.
- ICML-2017-ShenLYM #algorithm #multi #named #optimisation
- GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization (LS, WL0, GY, SM), pp. 3125–3134.
- ICML-2017-ShiKFHL #framework #platform
- World of Bits: An Open-Domain Platform for Web-Based Agents (TS, AK, LF, JH, PL), pp. 3135–3144.
- ICML-2017-ShrikumarGK #difference #learning
- Learning Important Features Through Propagating Activation Differences (AS, PG, AK), pp. 3145–3153.
- ICML-2017-Shrivastava #performance
- Optimal Densification for Fast and Accurate Minwise Hashing (AS), pp. 3154–3163.
- ICML-2017-ShuBG #estimation
- Bottleneck Conditional Density Estimation (RS, HHB, MG), pp. 3164–3172.
- ICML-2017-ShyamGD
- Attentive Recurrent Comparators (PS, SG, AD), pp. 3173–3181.
- ICML-2017-SiZKMDH
- Gradient Boosted Decision Trees for High Dimensional Sparse Output (SS, HZ0, SSK, DM, ISD, CJH), pp. 3182–3190.
- ICML-2017-SilverHHSGHDRRB #learning #predict
- The Predictron: End-To-End Learning and Planning (DS, HvH, MH, TS, AG, TH, GDA, DPR, NCR, AB, TD), pp. 3191–3199.
- ICML-2017-Simsekli #difference #equation #markov #monte carlo #probability
- Fractional Langevin Monte Carlo: Exploring Levy Driven Stochastic Differential Equations for Markov Chain Monte Carlo (US), pp. 3200–3209.
- ICML-2017-0005P #estimation
- Nonparanormal Information Estimation (SS0, BP), pp. 3210–3219.
- ICML-2017-SivakumarB
- High-Dimensional Structured Quantile Regression (VS, AB), pp. 3220–3229.
- ICML-2017-StaibJ #robust
- Robust Budget Allocation via Continuous Submodular Functions (MS, SJ), pp. 3230–3240.
- ICML-2017-StanZ0K #probability
- Probabilistic Submodular Maximization in Sub-Linear Time (SS, MZ, AK0, AK), pp. 3241–3250.
- ICML-2017-StichRJ #approximate #coordination
- Approximate Steepest Coordinate Descent (SUS, AR, MJ), pp. 3251–3259.
- ICML-2017-SuggalaYR #modelling #visual notation
- Ordinal Graphical Models: A Tale of Two Approaches (ASS, EY, PR), pp. 3260–3269.
- ICML-2017-SugiyamaNT #statistics
- Tensor Balancing on Statistical Manifold (MS, HN, KT), pp. 3270–3279.
- ICML-2017-SunDK #algorithm
- Safety-Aware Algorithms for Adversarial Contextual Bandit (WS, DD, AK), pp. 3280–3288.
- ICML-2017-0001N #composition #learning #modelling #scalability
- Relative Fisher Information and Natural Gradient for Learning Large Modular Models (KS0, FN), pp. 3289–3298.
- ICML-2017-SunRMW #learning #named
- meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (XS0, XR, SM, HW), pp. 3299–3308.
- ICML-2017-SunVGBB #learning #predict
- Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction (WS0, AV, GJG, BB, JAB), pp. 3309–3318.
- ICML-2017-SundararajanTY #axiom #network
- Axiomatic Attribution for Deep Networks (MS, AT, QY), pp. 3319–3328.
- ICML-2017-SureshYKM #communication #distributed #estimation
- Distributed Mean Estimation with Limited Communication (ATS, FXY, SK, HBM), pp. 3329–3337.
- ICML-2017-SuzumuraNUTT #higher-order #interactive #modelling
- Selective Inference for Sparse High-Order Interaction Models (SS, KN, YU, KT, IT), pp. 3338–3347.
- ICML-2017-TaiebTH #probability
- Coherent Probabilistic Forecasts for Hierarchical Time Series (SBT, JWT, RJH), pp. 3348–3357.
- ICML-2017-TanM #learning #modelling
- Partitioned Tensor Factorizations for Learning Mixed Membership Models (ZT, SM0), pp. 3358–3367.
- ICML-2017-TandonLDK #distributed #learning
- Gradient Coding: Avoiding Stragglers in Distributed Learning (RT, QL, AGD, NK), pp. 3368–3376.
- ICML-2017-TangGD #scalability #sketching
- Gradient Projection Iterative Sketch for Large-Scale Constrained Least-Squares (JT, MG, MED), pp. 3377–3386.
- ICML-2017-Telgarsky #network
- Neural Networks and Rational Functions (MT), pp. 3387–3393.
- ICML-2017-ThiLNT #classification #probability #problem
- Stochastic DCA for the Large-sum of Non-convex Functions Problem and its Application to Group Variable Selection in Classification (HALT, HML, PDN, BT), pp. 3394–3403.
- ICML-2017-Tian #analysis #convergence #network
- An Analytical Formula of Population Gradient for two-layered ReLU network and its Applications in Convergence and Critical Point Analysis (YT), pp. 3404–3413.
- ICML-2017-TokuiS
- Evaluating the Variance of Likelihood-Ratio Gradient Estimators (ST, IS), pp. 3414–3423.
- ICML-2017-TompsonSSP #network #simulation
- Accelerating Eulerian Fluid Simulation With Convolutional Networks (JT, KS, PS, KP), pp. 3424–3433.
- ICML-2017-TosattoPDR
- Boosted Fitted Q-Iteration (ST, MP, CD, MR), pp. 3434–3443.
- ICML-2017-ToshD #learning
- Diameter-Based Active Learning (CT, SD), pp. 3444–3452.
- ICML-2017-TripuraneniRGT #monte carlo
- Magnetic Hamiltonian Monte Carlo (NT, MR, ZG, RET), pp. 3453–3461.
- ICML-2017-TrivediDWS #graph #named #reasoning
- Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs (RT, HD, YW0, LS), pp. 3462–3471.
- ICML-2017-TsakirisV #clustering #component
- Hyperplane Clustering via Dual Principal Component Pursuit (MCT, RV), pp. 3472–3481.
- ICML-2017-TuVWGJR #locality
- Breaking Locality Accelerates Block Gauss-Seidel (ST, SV, ACW, AG, MIJ, BR), pp. 3482–3491.
- ICML-2017-UbaruM #classification #multi #testing
- Multilabel Classification with Group Testing and Codes (SU, AM), pp. 3492–3501.
- ICML-2017-UmlauftH #learning #probability
- Learning Stable Stochastic Nonlinear Dynamical Systems (JU, SH), pp. 3502–3510.
- ICML-2017-UrschelBMR #learning #process
- Learning Determinantal Point Processes with Moments and Cycles (JU, VEB, AM, PR), pp. 3511–3520.
- ICML-2017-ValeraG #automation #dataset #statistics
- Automatic Discovery of the Statistical Types of Variables in a Dataset (IV, ZG), pp. 3521–3529.
- ICML-2017-VaswaniKWGLS #independence #learning #online
- Model-Independent Online Learning for Influence Maximization (SV, BK, ZW, MG, LVSL, MS), pp. 3530–3539.
- ICML-2017-VezhnevetsOSHJS #learning #network
- FeUdal Networks for Hierarchical Reinforcement Learning (ASV, SO, TS, NH, MJ, DS, KK), pp. 3540–3549.
- ICML-2017-Villacampa-Calvo #classification #multi #process #scalability #using
- Scalable Multi-Class Gaussian Process Classification using Expectation Propagation (CVC, DHL), pp. 3550–3559.
- ICML-2017-VillegasYZSLL #learning #predict
- Learning to Generate Long-term Future via Hierarchical Prediction (RV, JY, YZ, SS, XL, HL), pp. 3560–3569.
- ICML-2017-VorontsovTKP #dependence #learning #network #on the #orthogonal
- On orthogonality and learning recurrent networks with long term dependencies (EV, CT, SK, CP), pp. 3570–3578.
- ICML-2017-WalderB #estimation #performance #process
- Fast Bayesian Intensity Estimation for the Permanental Process (CJW, ANB), pp. 3579–3588.
- ICML-2017-WangAD #adaptation #evaluation
- Optimal and Adaptive Off-policy Evaluation in Contextual Bandits (YXW, AA, MD), pp. 3589–3597.
- ICML-2017-WangFHMR #capacity #locality
- Capacity Releasing Diffusion for Speed and Locality (DW0, KF, MH, MWM, SR), pp. 3598–3607.
- ICML-2017-WangGM #optimisation #sketching #statistics
- Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging (SW, AG, MWM), pp. 3608–3616.
- ICML-2017-WangG #estimation #robust #visual notation
- Robust Gaussian Graphical Model Estimation with Arbitrary Corruption (LW, QG), pp. 3617–3626.
- ICML-2017-WangJ #optimisation #performance
- Max-value Entropy Search for Efficient Bayesian Optimization (ZW, SJ), pp. 3627–3635.
- ICML-2017-WangKS0 #distributed #learning #performance
- Efficient Distributed Learning with Sparsity (JW, MK, NS, TZ0), pp. 3636–3645.
- ICML-2017-WangKB #modelling #probability #robust
- Robust Probabilistic Modeling with Bayesian Data Reweighting (YW, AK, DMB), pp. 3646–3655.
- ICML-2017-WangLJK #kernel #learning #optimisation
- Batched High-dimensional Bayesian Optimization via Structural Kernel Learning (ZW, CL, SJ, PK), pp. 3656–3664.
- ICML-2017-WangL #composition
- Tensor Decomposition via Simultaneous Power Iteration (PAW, CJL), pp. 3665–3673.
- ICML-2017-WangWHMZD #modelling #sequence
- Sequence Modeling via Segmentations (CW, YW, PSH, AM, DZ, LD0), pp. 3674–3683.
- ICML-2017-WangWTS #policy #process
- Variational Policy for Guiding Point Processes (YW0, GW, EAT, LS), pp. 3684–3693.
- ICML-2017-WangX #algorithm #first-order
- Exploiting Strong Convexity from Data with Primal-Dual First-Order Algorithms (JW, LX), pp. 3694–3702.
- ICML-2017-WangX0T
- Beyond Filters: Compact Feature Map for Portable Deep Model (YW, CX0, CX0, DT), pp. 3703–3711.
- ICML-2017-WangZG #framework #matrix #rank
- A Unified Variance Reduction-Based Framework for Nonconvex Low-Rank Matrix Recovery (LW, XZ, QG), pp. 3712–3721.
- ICML-2017-WeiSKOG #multi #process #similarity
- Source-Target Similarity Modelings for Multi-Source Transfer Gaussian Process Regression (PW, RS, YK, YSO, CKG), pp. 3722–3731.
- ICML-2017-WenMBY #modelling
- Latent Intention Dialogue Models (THW, YM, PB, SJY), pp. 3732–3741.
- ICML-2017-White #learning #specification
- Unifying Task Specification in Reinforcement Learning (MW), pp. 3742–3750.
- ICML-2017-WichrowskaMHCDF #scalability
- Learned Optimizers that Scale and Generalize (OW, NM, MWH, SGC, MD, NdF, JSD), pp. 3751–3760.
- ICML-2017-WinnerSS #integer #modelling
- Exact Inference for Integer Latent-Variable Models (KW, DS, DS), pp. 3761–3770.
- ICML-2017-WrigleyLY
- Tensor Belief Propagation (AW, WSL, NY), pp. 3771–3779.
- ICML-2017-WuZ #metric #multi #performance
- A Unified View of Multi-Label Performance Measures (XZW, ZHZ), pp. 3780–3788.
- ICML-2017-XiaQCBYL #learning
- Dual Supervised Learning (YX, TQ, WC0, JB0, NY, TYL), pp. 3789–3798.
- ICML-2017-XieDZKYZX #constraints #learning #modelling
- Learning Latent Space Models with Angular Constraints (PX, YD, YZ, AK, YY, JZ, EPX), pp. 3799–3810.
- ICML-2017-XieSX
- Uncorrelation and Evenness: a New Diversity-Promoting Regularizer (PX, AS, EPX), pp. 3811–3820.
- ICML-2017-XuLY #convergence #optimisation #performance #probability
- Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence (YX, QL, TY), pp. 3821–3830.
- ICML-2017-XuLZ #learning #process #sequence
- Learning Hawkes Processes from Short Doubly-Censored Event Sequences (HX, DL, HZ), pp. 3831–3840.
- ICML-2017-0002TLFYG #adaptation #distributed #optimisation
- Adaptive Consensus ADMM for Distributed Optimization (ZX0, GT, HL0, MATF, XY, TG), pp. 3841–3850.
- ICML-2017-YangBL #estimation #modelling
- High-dimensional Non-Gaussian Single Index Models via Thresholded Score Function Estimation (ZY, KB, HL0), pp. 3851–3860.
- ICML-2017-YangFSH #clustering #learning #towards
- Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering (BY, XF0, NDS, MH), pp. 3861–3870.
- ICML-2017-YangGKSFL #on the #set
- On The Projection Operator to A Three-view Cardinality Constrained Set (HY, SG, CK, DS, RF, JL0), pp. 3871–3880.
- ICML-2017-YangHSB #modelling #using
- Improved Variational Autoencoders for Text Modeling using Dilated Convolutions (ZY, ZH, RS, TBK), pp. 3881–3890.
- ICML-2017-YangKT #classification #network #video
- Tensor-Train Recurrent Neural Networks for Video Classification (YY, DK, VT), pp. 3891–3900.
- ICML-2017-YangL0 #optimisation
- A Richer Theory of Convex Constrained Optimization with Reduced Projections and Improved Rates (TY, QL, LZ0), pp. 3901–3910.
- ICML-2017-YangL #modelling #statistics
- Sparse + Group-Sparse Dirty Models: Statistical Guarantees without Unreasonable Conditions and a Case for Non-Convexity (EY, ACL), pp. 3911–3920.
- ICML-2017-YangRS #scalability
- Scalable Bayesian Rule Lists (HY, CR, MS), pp. 3921–3930.
- ICML-2017-YeLZ #approximate #convergence
- Approximate Newton Methods and Their Local Convergence (HY, LL, ZZ), pp. 3931–3939.
- ICML-2017-YeWL
- A Simulated Annealing Based Inexact Oracle for Wasserstein Loss Minimization (JY, JZW, JL0), pp. 3940–3948.
- ICML-2017-YenLCSLR
- Latent Feature Lasso (IEHY, WCL, SEC, ASS, SDL, PR), pp. 3949–3957.
- ICML-2017-YoonH #network
- Combined Group and Exclusive Sparsity for Deep Neural Networks (JY, SJH), pp. 3958–3966.
- ICML-2017-ZaheerAS #clustering #modelling #sequence
- Latent LSTM Allocation: Joint Clustering and Non-Linear Dynamic Modeling of Sequence Data (MZ, AA, AJS), pp. 3967–3976.
- ICML-2017-ZaheerKAMS #performance
- Canopy Fast Sampling with Cover Trees (MZ, SK, AA, JMFM, AJS), pp. 3977–3986.
- ICML-2017-ZenkePG #learning
- Continual Learning Through Synaptic Intelligence (FZ, BP, SG), pp. 3987–3995.
- ICML-2017-ZhangCGHC #probability
- Stochastic Gradient Monomial Gamma Sampler (YZ, CC, ZG, RH, LC), pp. 3996–4005.
- ICML-2017-ZhangGFCHSC #generative
- Adversarial Feature Matching for Text Generation (YZ, ZG, KF, ZC, RH, DS, LC), pp. 4006–4015.
- ICML-2017-ZhangHLYCHW #reduction #scalability
- Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction (WZ, BH, WL0, JY, DC, XH0, JW0), pp. 4016–4025.
- ICML-2017-ZhangHTC #learning
- Re-revisiting Learning on Hypergraphs: Confidence Interval and Subgradient Method (CZ, SH, ZGT, THHC), pp. 4026–4034.
- ICML-2017-Zhang0KALZ #learning #linear #modelling #named #precise
- ZipML: Training Linear Models with End-to-End Low Precision, and a Little Bit of Deep Learning (HZ, JL0, KK, DA, JL0, CZ), pp. 4035–4043.
- ICML-2017-ZhangLW #network
- Convexified Convolutional Neural Networks (YZ0, PL, MJW), pp. 4044–4053.
- ICML-2017-ZhangZZHZ #distributed #learning #network #online
- Projection-free Distributed Online Learning in Networks (WZ0, PZ, WZ0, SCHH, TZ), pp. 4054–4062.
- ICML-2017-ZhangZ #multi
- Multi-Class Optimal Margin Distribution Machine (TZ, ZHZ), pp. 4063–4071.
- ICML-2017-ZhaoDB #relational
- Leveraging Node Attributes for Incomplete Relational Data (HZ, LD, WLB), pp. 4072–4081.
- ICML-2017-ZhaoLW0TY #matrix #network #rank
- Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank (LZ, SL, YW, ZL0, JT0, BY0), pp. 4082–4090.
- ICML-2017-ZhaoSE #generative #learning #modelling
- Learning Hierarchical Features from Deep Generative Models (SZ, JS, SE), pp. 4091–4099.
- ICML-2017-ZhaoYKJB #architecture #learning
- Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture (MZ, SY, DK, TSJ, MTB), pp. 4100–4109.
- ICML-2017-0004K #learning
- Follow the Moving Leader in Deep Learning (SZ0, JTK), pp. 4110–4119.
- ICML-2017-ZhengMWCYML #probability
- Asynchronous Stochastic Gradient Descent with Delay Compensation (SZ, QM, TW, WC0, NY, ZM, TYL), pp. 4120–4129.
- ICML-2017-0007MW #effectiveness #learning
- Collect at Once, Use Effectively: Making Non-interactive Locally Private Learning Possible (KZ0, WM, LW0), pp. 4130–4139.
- ICML-2017-ZhongS0BD #network
- Recovery Guarantees for One-hidden-layer Neural Networks (KZ, ZS, PJ0, PLB, ISD), pp. 4140–4149.
- ICML-2017-ZhouGG #adaptation #probability
- Stochastic Adaptive Quasi-Newton Methods for Minimizing Expected Values (CZ, WG, DG), pp. 4150–4159.
- ICML-2017-ZhouLZ #equilibrium #game studies #identification #nash #random
- Identify the Nash Equilibrium in Static Games with Random Payoffs (YZ, JL, JZ0), pp. 4160–4169.
- ICML-2017-ZhouZIJWS #dataset #multi #testing
- When can Multi-Site Datasets be Pooled for Regression? Hypothesis Tests, l₂-consistency and Neuroscience Applications (HHZ, YZ, VKI, SCJ, GW, VS), pp. 4170–4179.
- ICML-2017-ZhuWZG #algorithm #probability
- High-Dimensional Variance-Reduced Stochastic Gradient Expectation-Maximization Algorithm (RZ, LW, CZ, QG), pp. 4180–4188.
- ICML-2017-ZillySKS #network
- Recurrent Highway Networks (JGZ, RKS, JK, JS), pp. 4189–4198.
- ICML-2017-ZoghiTGKSW #learning #modelling #online #probability #rank
- Online Learning to Rank in Stochastic Click Models (MZ, TT, MG, BK, CS, ZW), pp. 4199–4208.