199 papers:
- SCSM-2015-Kanawati #community #detection #network
- Ensemble Selection for Community Detection in Complex Networks (RK), pp. 138–147.
- ICEIS-v1-2015-SouzaBGBE #learning #online
- Applying Ensemble-based Online Learning Techniques on Crime Forecasting (AJdS, APB, HMG, JPB, FE), pp. 17–24.
- ECIR-2015-HagenPBS #classification #detection #sentiment #twitter #using
- Twitter Sentiment Detection via Ensemble Classification Using Averaged Confidence Scores (MH, MP, MB, BS), pp. 741–754.
- KDD-2015-LiuLWTF #clustering
- Spectral Ensemble Clustering (HL, TL, JW, DT, YF), pp. 715–724.
- SIGIR-2015-ChenLZLS #approximate #matrix #named #recommendation #scalability
- WEMAREC: Accurate and Scalable Recommendation through Weighted and Ensemble Matrix Approximation (CC, DL, YZ, QL, LS), pp. 303–312.
- SIGIR-2015-LuccheseNOPTV #algorithm #documentation #named #performance #rank
- QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees (CL, FMN, SO, RP, NT, RV), pp. 73–82.
- SAC-2015-GomesBE #classification #data type #learning
- Pairwise combination of classifiers for ensemble learning on data streams (HMG, JPB, FE), pp. 941–946.
- SAC-2015-StracciaM #concept #estimation #fuzzy #learning #named #owl #probability #using
- pFOIL-DL: learning (fuzzy) EL concept descriptions from crisp OWL data using a probabilistic ensemble estimation (US, MM), pp. 345–352.
- SAC-2015-TambeN #behaviour #game studies #modelling #resource management #robust #security
- Robust resource allocation in security games and ensemble modeling of adversary behavior (AT, TN), pp. 277–282.
- DocEng-2014-NourashrafeddinMA #approach #clustering #concept #documentation #using #wiki
- An ensemble approach for text document clustering using Wikipedia concepts (SN, EEM, DVA), pp. 107–116.
- CHI-2014-MartinGS #gesture
- Exploring percussive gesture on iPads with ensemble metatone (CM, HJG, BS), pp. 1025–1028.
- CSCW-2014-KimCB #collaboration #named
- Ensemble: exploring complementary strengths of leaders and crowds in creative collaboration (JK, JC, MSB), pp. 745–755.
- CIKM-2014-LinLYC #classification #modelling #sentiment
- Exploring Ensemble of Models in Taxonomy-based Cross-Domain Sentiment Classification (CKL, YYL, CHY, HHC), pp. 1279–1288.
- ECIR-2014-Lommatzsch #realtime #recommendation #using
- Real-Time News Recommendation Using Context-Aware Ensembles (AL), pp. 51–62.
- ICML-c1-2014-LacosteMLL #learning
- Agnostic Bayesian Learning of Ensembles (AL, MM, FL, HL), pp. 611–619.
- ICML-c2-2014-BaiLS #classification #framework #online
- A Bayesian Framework for Online Classifier Ensemble (QB, HL, SS), pp. 1584–1592.
- ICML-c2-2014-CortesKM #predict
- Ensemble Methods for Structured Prediction (CC, VK, MM), pp. 1134–1142.
- ICML-c2-2014-WangY #crowdsourcing
- Ensemble-Based Tracking: Aggregating Crowdsourced Structured Time Series Data (NW, DYY), pp. 1107–1115.
- ICPR-2014-BagheriGE #approach #classification #novel #subclass
- Generic Subclass Ensemble: A Novel Approach to Ensemble Classification (MAB, QG, SE), pp. 1254–1259.
- ICPR-2014-BashbaghiGSB #multi #using
- Watch-List Screening Using Ensembles Based on Multiple Face Representations (SB, EG, RS, GAB), pp. 4489–4494.
- ICPR-2014-ChakeriH #approach #clustering #framework #game studies #set
- Dominant Sets as a Framework for Cluster Ensembles: An Evolutionary Game Theory Approach (AC, LOH), pp. 3457–3462.
- ICPR-2014-CruzSC #on the
- On Meta-learning for Dynamic Ensemble Selection (RMOC, RS, GDCC), pp. 1230–1235.
- ICPR-2014-DumonceauxRG #algebra #approach #clustering
- An Algebraic Approach to Ensemble Clustering (FD, GR, MG), pp. 1301–1306.
- ICPR-2014-KrawczykWC #classification #clustering #fuzzy
- Weighted One-Class Classifier Ensemble Based on Fuzzy Feature Space Partitioning (BK, MW, BC), pp. 2838–2843.
- ICPR-2014-LiYLYWH #classification #multi #predict
- Multi-view Based AdaBoost Classifier Ensemble for Class Prediction from Gene Expression Profiles (LL, ZY, JL, JY, HSW, GH), pp. 178–183.
- ICPR-2014-TaoIWS #approximate #data transformation #rank #representation
- Ensemble Manifold Structured Low Rank Approximation for Data Representation (LT, HHSI, YW, XS), pp. 744–749.
- ICPR-2014-YangYH #learning
- Diversity-Based Ensemble with Sample Weight Learning (CY, XCY, HWH), pp. 1236–1241.
- MLDM-2014-AlshdaifatCD #classification #multi
- A Multi-path Strategy for Hierarchical Ensemble Classification (EA, FC, KD), pp. 198–212.
- MLDM-2014-LimsettoW
- Integrating Weight with Ensemble to Handle Changes in Class Distribution (NL, KW), pp. 91–106.
- RecSys-2014-TangJLL #personalisation #recommendation
- Ensemble contextual bandits for personalized recommendation (LT, YJ, LL, TL), pp. 73–80.
- SEKE-2014-GaoKN #estimation #learning #quality #ranking
- Comparing Two Approaches for Adding Feature Ranking to Sampled Ensemble Learning for Software Quality Estimation (KG, TMK, AN), pp. 280–285.
- SIGIR-2014-LiuL #learning #probability #segmentation #word
- Probabilistic ensemble learning for vietnamese word segmentation (WL, LL), pp. 931–934.
- SIGIR-2014-TangJY #optimisation #ranking #runtime
- Cache-conscious runtime optimization for ranking ensembles (XT, XJ, TY), pp. 1123–1126.
- SAC-2014-GomesE #adaptation #classification #data type #named #social
- SAE2: advances on the social adaptive ensemble classifier for data streams (HMG, FE), pp. 798–804.
- HPDC-2014-WangZCLR #generative
- Next generation job management systems for extreme-scale ensemble computing (KW, XZ, HC, ML, IR), pp. 111–114.
- CBSE-2013-BarnatBCP #component #named #verification
- DCCL: verification of component systems with ensembles (JB, NB, IC, ZP), pp. 43–52.
- CBSE-2013-BuresGHKKP #component #named
- DEECO: an ensemble-based component system (TB, IG, PH, JK, MK, FP), pp. 81–90.
- CBSE-2013-KezniklBPGHH #component #design #invariant #refinement
- Design of ensemble-based component systems by invariant refinement (JK, TB, FP, IG, PH, NH), pp. 91–100.
- DATE-2013-PaoneVZSMHL #embedded #manycore #modelling #simulation
- Improving simulation speed and accuracy for many-core embedded platforms with ensemble models (EP, NV, VZ, CS, DM, GH, TL), pp. 671–676.
- ICDAR-2013-MoghaddamMC #automation #documentation #framework #image
- Unsupervised Ensemble of Experts (EoE) Framework for Automatic Binarization of Document Images (RFM, FFM, MC), pp. 703–707.
- ICDAR-2013-SuL #learning #recognition
- Discriminative Weighting and Subspace Learning for Ensemble Symbol Recognition (FS, TL), pp. 1088–1092.
- ICDAR-2013-YanYWYYH #classification #sorting
- Sorting-Based Dynamic Classifier Ensemble Selection (YY, XCY, ZBW, XY, CY, HWH), pp. 673–677.
- HCI-AS-2013-TakanoS #learning
- Nature Sound Ensemble Learning in Narrative-Episode Creation with Pictures (KT, SS), pp. 493–502.
- HCI-IMT-2013-SakamotoTT #music #using
- A Method for Discussing Musical Expression between Music Ensemble Players Using a Web-Based System (TS, ST, JT), pp. 730–739.
- KDD-2013-ZimekGCS #detection #effectiveness #performance
- Subsampling for efficient and effective unsupervised outlier detection ensembles (AZ, MG, RJGBC, JS), pp. 428–436.
- SEKE-2013-GaoKN #estimation #preprocessor #quality
- Exploring Ensemble-Based Data Preprocessing Techniques for Software Quality Estimation (KG, TMK, AN), pp. 612–617.
- PPDP-2013-LamC #constraints #distributed #execution
- Decentralized execution of constraint handling rules for ensembles (ESLL, IC), pp. 205–216.
- WICSA-ECSA-2012-KezniklBPK #component #towards
- Towards Dependable Emergent Ensembles of Components: The DEECo Component Model (JK, TB, FP, MK), pp. 249–252.
- CASE-2012-MatherH #automation #modelling
- Ensemble modeling and control for congestion management in automated warehouses (TWM, MAH), pp. 390–395.
- DRR-2012-Obafemi-AjayiAX #classification #documentation
- Ensemble methods with simple features for document zone classification (TOA, GA, BX).
- CHI-2012-HeinrichsSHM #formal method #interactive #mobile #towards
- Toward a theory of interaction in mobile paper-digital ensembles (FH, DS, JH, MM), pp. 1897–1900.
- CIKM-2012-EldardiryN #analysis #classification #graph #how #predict
- An analysis of how ensembles of collective classifiers improve predictions in graphs (HE, JN), pp. 225–234.
- CIKM-2012-GuoMCJ #learning #recommendation #social
- Learning to recommend with social relation ensemble (LG, JM, ZC, HJ), pp. 2599–2602.
- CIKM-2012-LiBCH #clustering #learning #relational
- Relational co-clustering via manifold ensemble learning (PL, JB, CC, ZH), pp. 1687–1691.
- ECIR-2012-ToramanC #categorisation #performance
- Squeezing the Ensemble Pruning: Faster and More Accurate Categorization for News Portals (CT, FC), pp. 508–511.
- ICML-2012-HannahD #design #geometry #programming
- Ensemble Methods for Convex Regression with Applications to Geometric Programming Based Circuit Design (LH, DBD), p. 24.
- ICPR-2012-HiradeY #learning #predict
- Ensemble learning for change-point prediction (RH, TY), pp. 1860–1863.
- ICPR-2012-MaoYLZ #classification #invariant #verification
- Age-invariant face verification based on Local Classifier Ensemble (XJM, YBY, NL, YZ), pp. 2408–2411.
- ICPR-2012-RadtkeGSG #adaptation
- Adaptive selection of ensembles for imbalanced class distributions (PVWR, EG, RS, DOG), pp. 2980–2984.
- ICPR-2012-SuYL #recognition
- Ensemble symbol recognition with Hough forest (FS, LY, TL), pp. 1659–1662.
- ICPR-2012-TuS #adaptation #classification #learning
- Dynamical ensemble learning with model-friendly classifiers for domain adaptation (WT, SS), pp. 1181–1184.
- KDD-2012-Williams
- Ensembles and model delivery for tax compliance (GW), p. 1003.
- KDD-2012-YuDRZY #classification #multi #predict
- Transductive multi-label ensemble classification for protein function prediction (GXY, CD, HR, GZ, ZY), pp. 1077–1085.
- KDIR-2012-CheungZZ #approach #network
- A Bayesian Approach for Constructing Ensemble Neural Network (SHC, YZ, ZZ), pp. 374–377.
- MLDM-2012-Moreira-MatiasMGB #categorisation #classification #matrix #using
- Text Categorization Using an Ensemble Classifier Based on a Mean Co-association Matrix (LMM, JMM, JG, PB), pp. 525–539.
- SIGIR-2012-LipkaSA #classification #clustering #information retrieval #problem
- Cluster-based one-class ensemble for classification problems in information retrieval (NL, BS, MA), pp. 1041–1042.
- SAT-2012-JarvisaloKKK #performance
- Finding Efficient Circuits for Ensemble Computation (MJ, PK, MK, JHK), pp. 369–382.
- ICDAR-2011-ManoharVCPN #clustering #graph #segmentation
- Graph Clustering-Based Ensemble Method for Handwritten Text Line Segmentation (VM, SNPV, HC, RP, PN), pp. 574–578.
- ICDAR-2011-VajdaJF #approach #learning
- A Semi-supervised Ensemble Learning Approach for Character Labeling with Minimal Human Effort (SV, AJ, GAF), pp. 259–263.
- SIGMOD-2011-GulloDT #clustering
- Advancing data clustering via projective clustering ensembles (FG, CD, AT), pp. 733–744.
- CIKM-2011-VinzamuriK #classification #convergence #design #using
- Designing an ensemble classifier over subspace classifiers using iterative convergence routine (BV, KK), pp. 693–698.
- ICML-2011-JawanpuriaNR #kernel #learning #performance #using
- Efficient Rule Ensemble Learning using Hierarchical Kernels (PJ, JSN, GR), pp. 161–168.
- KDD-2011-ZhangLWGZG #data type #modelling #performance #predict
- Enabling fast prediction for ensemble models on data streams (PZ, JL, PW, BJG, XZ, LG), pp. 177–185.
- SEKE-2011-Collazo-MojicaS #distributed #metamodelling
- A Metamodel for Distributed Ensembles of Virtual Appliances (XJCM, SMS), pp. 560–565.
- SIGIR-2011-SandenZ #classification #multi #music
- Enhancing multi-label music genre classification through ensemble techniques (CS, JZZ), pp. 705–714.
- SAC-2011-GomesRS #concept #data type #learning
- Learning recurring concepts from data streams with a context-aware ensemble (JBG, EMR, PACS), pp. 994–999.
- CASE-2010-ParkSR #automation #classification #database
- Image-based automated chemical database annotation with ensemble of machine-vision classifiers (JP, KS, GRR), pp. 168–173.
- CAiSE-2010-DornD #adaptation #self
- Interaction-Driven Self-adaptation of Service Ensembles (CD, SD), pp. 393–408.
- ICPR-2010-AbdalaWJ #clustering #random
- Ensemble Clustering via Random Walker Consensus Strategy (DDA, PW, XJ), pp. 1433–1436.
- ICPR-2010-ArmanoH #prototype #random
- Random Prototype-based Oracle for Selection-fusion Ensembles (GA, NH), pp. 77–80.
- ICPR-2010-BayramDSM #approach #classification
- An Ensemble of Classifiers Approach to Steganalysis (SB, AED, HTS, NDM), pp. 4376–4379.
- ICPR-2010-Carneiro #automation #case study #comparative #design #image
- A Comparative Study on the Use of an Ensemble of Feature Extractors for the Automatic Design of Local Image Descriptors (GC), pp. 3356–3359.
- ICPR-2010-ErdoganS #classification #framework #learning #linear
- A Unifying Framework for Learning the Linear Combiners for Classifier Ensembles (HE, MUS), pp. 2985–2988.
- ICPR-2010-GuoBC #approach #learning #using
- Support Vectors Selection for Supervised Learning Using an Ensemble Approach (LG, SB, NC), pp. 37–40.
- ICPR-2010-KappSM #adaptation #incremental #learning
- Adaptive Incremental Learning with an Ensemble of Support Vector Machines (MNK, RS, PM), pp. 4048–4051.
- ICPR-2010-KimKP #algorithm #generative #simulation
- A Simulation Study on the Generative Neural Ensemble Decoding Algorithms (SPK, MKK, GTP), pp. 3797–3800.
- ICPR-2010-KotropoulosAP #classification #music
- Ensemble Discriminant Sparse Projections Applied to Music Genre Classification (CK, GRA, YP), pp. 822–825.
- ICPR-2010-LeeJJ #image #ranking #retrieval #scalability
- Unsupervised Ensemble Ranking: Application to Large-Scale Image Retrieval (JEL, RJ, AKJ), pp. 3902–3906.
- ICPR-2010-Mirzaei #algorithm #clustering #multi #novel
- A Novel Multi-view Agglomerative Clustering Algorithm Based on Ensemble of Partitions on Different Views (HM), pp. 1007–1010.
- ICPR-2010-PlumptonKLJ #classification #linear #online #using
- On-Line fMRI Data Classification Using Linear and Ensemble Classifiers (COP, LIK, DEJL, SJJ), pp. 4312–4315.
- ICPR-2010-SakarKSG #clustering #feature model #predict
- Prediction of Protein Sub-nuclear Location by Clustering mRMR Ensemble Feature Selection (COS, OK, HS, FG), pp. 2572–2575.
- ICPR-2010-SenkoK #clustering #pattern matching #pattern recognition #recognition #using
- Pattern Recognition Method Using Ensembles of Regularities Found by Optimal Partitioning (OVS, AVK), pp. 2957–2960.
- ICPR-2010-SmithW #analysis
- A Bias-Variance Analysis of Bootstrapped Class-Separability Weighting for Error-Correcting Output Code Ensembles (RSS, TW), pp. 61–64.
- ICPR-2010-WoloszynskiK #classification #random
- A Measure of Competence Based on Randomized Reference Classifier for Dynamic Ensemble Selection (TW, MK), pp. 4194–4197.
- ICPR-2010-WuLW #image #learning #retrieval #using
- Enhancing SVM Active Learning for Image Retrieval Using Semi-supervised Bias-Ensemble (JW, ML, CLW), pp. 3175–3178.
- ICPR-2010-ZhangW #clustering #named
- ARImp: A Generalized Adjusted Rand Index for Cluster Ensembles (SZ, HSW), pp. 778–781.
- KDD-2010-LuWZB
- Ensemble pruning via individual contribution ordering (ZL, XW, XZ, JB), pp. 871–880.
- KDD-2010-PrengerLVCH #bound #classification #fault
- Class-specific error bounds for ensemble classifiers (RJP, TDL, KRV, BYC, WGH), pp. 843–852.
- KDD-2010-YeLCJ #automation #categorisation #clustering #using
- Automatic malware categorization using cluster ensemble (YY, TL, YC, QJ), pp. 95–104.
- SEKE-2010-WangKG #classification #feature model #quality
- Ensemble Feature Selection Technique for Software Quality Classification (HW, TMK, KG), pp. 215–220.
- SAC-2010-FernandesLR #classification #random
- The impact of random samples in ensemble classifiers (PF, LL, DDAR), pp. 1002–1009.
- VLDB-2009-PandaHBB #learning #named #parallel #pipes and filters
- PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce (BP, JH, SB, RJB), pp. 1426–1437.
- CHI-2009-TalbotLKT #classification #interactive #machine learning #multi #named #visualisation
- EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers (JT, BL, AK, DST), pp. 1283–1292.
- HCI-NIMT-2009-JohnsonK #classification
- Ensemble SWLDA Classifiers for the P300 Speller (GDJ, DJK), pp. 551–557.
- ICEIS-J-2009-SchclarR #classification #random
- Random Projection Ensemble Classifiers (AS, LR), pp. 309–316.
- CIKM-2009-ChinavleKOF #classification
- Ensembles in adversarial classification for spam (DC, PK, TO, TF), pp. 2015–2018.
- CIKM-2009-WuZH #clustering
- Fragment-based clustering ensembles (OW, MZ, WH), pp. 1795–1798.
- KDD-2009-BifetHPKG #data type #evolution
- New ensemble methods for evolving data streams (AB, GH, BP, RK, RG), pp. 139–148.
- KDIR-2009-DuarteDRF #clustering #consistency #using
- Cluster Ensemble Selection — Using Average Cluster Consistency (FJFD, JMMD, FR, ALNF), pp. 85–95.
- MLDM-2009-DuangsoithongW #analysis #classification
- Relevance and Redundancy Analysis for Ensemble Classifiers (RD, TW), pp. 206–220.
- MLDM-2009-LiHLG #concept #detection #random #streaming
- Concept Drifting Detection on Noisy Streaming Data in Random Ensemble Decision Trees (PPL, XH, QL, YG), pp. 236–250.
- MLDM-2009-Mendes-MoreiraJSS #approach #case study #learning
- Ensemble Learning: A Study on Different Variants of the Dynamic Selection Approach (JMM, AMJ, CS, JFdS), pp. 191–205.
- MLDM-2009-RosenthalVHHL
- Drift-Aware Ensemble Regression (FR, PBV, MH, DH, WL), pp. 221–235.
- RecSys-2009-SchclarTRMA #collaboration #performance
- Ensemble methods for improving the performance of neighborhood-based collaborative filtering (AS, AT, LR, AM, LA), pp. 261–264.
- SIGIR-2009-MaKL #learning #recommendation #social #trust
- Learning to recommend with social trust ensemble (HM, IK, MRL), pp. 203–210.
- SAC-2009-FodehPT #clustering #documentation #semantics #statistics
- Combining statistics and semantics via ensemble model for document clustering (SJF, WFP, PNT), pp. 1446–1450.
- ICLP-2009-Ashley-RollmanLGPC #independence #scalability
- A Language for Large Ensembles of Independently Executing Nodes (MPAR, PL, SCG, PP, JC), pp. 265–280.
- DRR-2008-Obafemi-AjayiAF #classification #documentation
- Ensemble LUT classification for degraded document enhancement (TOA, GA, OF), p. 681509.
- CIKM-2008-HuangMG #categorisation #framework #multi
- Error-driven generalist+experts (edge): a multi-stage ensemble framework for text categorization (JH, OM, CLG), pp. 83–92.
- ICML-2008-DembczynskiKS
- Maximum likelihood rule ensembles (KD, WK, RS), pp. 224–231.
- ICPR-2008-WuF #3d #classification #learning #multi #using
- Multiple view based 3D object classification using ensemble learning of local subspaces (JW, KF), pp. 1–4.
- ICPR-2008-YuW #3d #classification #clustering #knowledge base
- Knowledge based cluster ensemble for 3D head model classification (ZY, HSW), pp. 1–4.
- FSE-2008-KulturTB #estimation #memory management #named #network #using
- ENNA: software effort estimation using ensemble of neural networks with associative memory (YK, BT, ABB), pp. 330–338.
- ICDAR-2007-KoSB
- K-Nearest Oracle for Dynamic Ensemble Selection (AHRK, RS, AdSBJ), pp. 422–426.
- TACAS-2007-ElkindGP #detection #sequence chart
- Detecting Races in Ensembles of Message Sequence Charts (EE, BG, DP), pp. 420–434.
- ICEIS-AIDSS-2007-Cuzzocrea #multi
- MRE-KDD+: A Multi-Resolution, Ensemble-Based Model for Advanced Knolwedge Discovery (AC), pp. 152–158.
- CIKM-2007-LiuTZ #learning #network
- Ensembling Bayesian network structure learning on limited data (FL, FT, QZ), pp. 927–930.
- MLDM-2007-SilvaGF #identification
- One Lead ECG Based Personal Identification with Feature Subspace Ensembles (HS, HG, ALNF), pp. 770–783.
- RecSys-2007-TiemannP #hybrid #learning #music #recommendation #towards
- Towards ensemble learning for hybrid music recommendation (MT, SP), pp. 177–178.
- SIGIR-2007-SevillanoAS #clustering #named
- BordaConsensus: a new consensus function for soft cluster ensembles (XS, FA, JCS), pp. 743–744.
- CIKM-2006-HuZZ #array #clustering #identification #integration #mining
- Integration of cluster ensemble and EM based text mining for microarray gene cluster identification and annotation (XH, XZ, XZ), pp. 824–825.
- ICML-2006-DeCoste #collaboration #matrix #predict #using
- Collaborative prediction using ensembles of Maximum Margin Matrix Factorizations (DD), pp. 249–256.
- ICML-2006-Martinez-MunozS #order
- Pruning in ordered bagging ensembles (GMM, AS), pp. 609–616.
- ICPR-v1-2006-LiCF #hybrid #kernel #set
- Hybrid Kernel Machine Ensemble for Imbalanced Data Sets (PL, KLC, WF), pp. 1108–1111.
- ICPR-v2-2006-GaoLL #approach #classification #learning #optimisation
- An ensemble classifier learning approach to ROC optimization (SG, CHL, JHL), pp. 679–682.
- ICPR-v2-2006-ViswanathJ #clustering #performance
- A Fast and Efficient Ensemble Clustering Method (PV, KJ), pp. 720–723.
- ICPR-v3-2006-SmithKHI #recognition #using
- Face Recognition Using Angular LDA and SVM Ensembles (RSS, JK, MH, JI), pp. 1008–1012.
- ICPR-v4-2006-KoSB #random
- A New Objective Function for Ensemble Selection in Random Subspaces (AHRK, RS, AdSBJ), pp. 185–188.
- ICPR-v4-2006-LefaucheurN #classification #multi #robust #symmetry
- Robust Multiclass Ensemble Classifiers via Symmetric Functions (PL, RN), pp. 136–139.
- ICPR-v4-2006-ShanZSCG06a #recognition
- Ensemble of Piecewise FDA Based on Spatial Histograms of Local (Gabor) Binary Patterns for Face Recognition (SS, WZ, YS, XC, WG), pp. 606–609.
- SIGIR-2006-SevillanoCAS #clustering #documentation #robust
- Feature diversity in cluster ensembles for robust document clustering (XS, GC, FA, JCS), pp. 697–698.
- SAC-2006-BiD #approach
- An evidential approach in ensembles (YB, WD), pp. 1–6.
- ICSE-2006-TwalaCS #predict
- Ensemble of missing data techniques to improve software prediction accuracy (BT, MC, MJS), pp. 909–912.
- ICLP-2006-BaralDT #composition #metaprogramming #set
- Macros, Macro Calls and Use of Ensembles in Modular Answer Set Programming (CB, JD, HT), pp. 376–390.
- ICDAR-2005-BhattacharyaC #classification #recognition
- Fusion of Combination Rules of an Ensemble of MLP Classifiers for Improved Recognition Accuracy of Handprinted Bangla Numerals (UB, BBC), pp. 322–326.
- ICDAR-2005-RadtkeSW #classification #feature model
- Intelligent Feature Extraction for Ensemble of Classifiers (PVWR, RS, TW), pp. 866–870.
- ICML-2005-CarneyCDL #network #predict #probability #using
- Predicting probability distributions for surf height using an ensemble of mixture density networks (MC, PC, JD, CL), pp. 113–120.
- ICML-2005-EspositoS #classification #comparison #monte carlo
- Experimental comparison between bagging and Monte Carlo ensemble classification (RE, LS), pp. 209–216.
- ICML-2005-KhoussainovHK #classification
- Ensembles of biased classifiers (RK, AH, NK), pp. 425–432.
- ICML-2005-KolterM #concept #using
- Using additive expert ensembles to cope with concept drift (JZK, MAM), pp. 449–456.
- KDD-2005-GondekH #clustering
- Non-redundant clustering with conditional ensembles (DG, TH), pp. 70–77.
- KDD-2005-HeC #approach #robust
- Making holistic schema matching robust: an ensemble approach (BH, KCCC), pp. 429–438.
- MLDM-2005-KoK #classification #on the
- On ECOC as Binary Ensemble Classifiers (JK, EK), pp. 1–10.
- SAC-2005-DongH #classification #clustering #parametricity
- Text classification based on data partitioning and parameter varying ensembles (YSD, KSH), pp. 1044–1048.
- VLDB-2004-Fan #classification #concept #data type #named
- StreamMiner: A Classifier Ensemble-based Engine to Mine Concept-drifting Data Streams (WF), pp. 1257–1260.
- ICEIS-v2-2004-KotsiantisP #classification #hybrid #using
- A Hybrid Decision Support Tool — Using Ensemble of Classifiers (SBK, PEP), pp. 448–456.
- ICML-2004-CaruanaNCK #library #modelling
- Ensemble selection from libraries of models (RC, ANM, GC, AK).
- ICML-2004-EspositoS #analysis #classification #monte carlo
- A Monte Carlo analysis of ensemble classification (RE, LS).
- ICML-2004-FernB #clustering #graph #problem
- Solving cluster ensemble problems by bipartite graph partitioning (XZF, CEB).
- ICML-2004-FrankK #multi #problem
- Ensembles of nested dichotomies for multi-class problems (EF, SK).
- ICML-2004-MelvilleM #learning
- Diverse ensembles for active learning (PM, RJM).
- ICPR-v1-2004-DomeniconiY #nearest neighbour
- Nearest Neighbor Ensemble (CD, BY), pp. 228–231.
- ICPR-v1-2004-GunterB #evaluation #feature model #recognition #word
- An Evaluation of Ensemble Methods in Handwritten Word Recognition Based on Feature Selection (SG, HB), pp. 388–392.
- ICPR-v1-2004-TopchyMJP #adaptation #clustering
- Adaptive Clustering Ensembles (APT, BMB, AKJ, WFP), pp. 272–275.
- ICPR-v1-2004-ZouariHLA #classification #performance #simulation
- Simulating Classifier Ensembles of Fixed Diversity for Studying Plurality Voting Performance (HZ, LH, YL, AMA), pp. 232–235.
- ICPR-v3-2004-HoiL #feedback
- Group-based Relevance Feedback with Support Vector Machine Ensembles (SCHH, MRL), pp. 874–877.
- ICPR-v3-2004-LiCKG #classification #detection #image
- Detecting Abnormal Regions in Colonoscopic Images by Patch-based Classifier Ensemble (PL, KLC, SMK, YG), pp. 774–777.
- ICPR-v3-2004-LucasH #recognition #sequence
- Sequence Recognition with Scanning N-Tuple Ensembles (SML, TKH), pp. 410–413.
- ICPR-v3-2004-Windeatt #classification #design
- Diversity/Accuracy and Ensemble Classifier Design (TW), pp. 454–457.
- SEKE-2004-KhoshgoftaarJ #case study #classification #quality
- Noise Elimination with Ensemble-Classifier Filtering: A Case-Study in Software Quality Engineerin (TMK, VHJ), pp. 226–231.
- ICDAR-2003-OliveiraSBS #algorithm #approach #feature model #multi #search-based
- Feature Selection for Ensembles: A Hierarchical Multi-Objective Genetic Algorithm Approach (LESdO, RS, FB, CYS), p. 676–?.
- ICDAR-2003-TakahashiN #learning #recognition
- A class-modular GLVQ ensemble with outlier learning for handwritten digit recognition (KT, DN), pp. 268–272.
- ICML-2003-BrownW #ambiguity #composition #learning #network
- The Use of the Ambiguity Decomposition in Neural Network Ensemble Learning Methods (GB, JLW), pp. 67–74.
- ICML-2003-FernB03a #approach #clustering #random
- Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach (XZF, CEB), pp. 186–193.
- KDD-2003-WangFYH #classification #concept #data type #mining #using
- Mining concept-drifting data streams using ensemble classifiers (HW, WF, PSY, JH), pp. 226–235.
- VLDB-2002-SantiniG #analysis #geometry #named
- GeMBASE: A Geometric Mediator for Brain Analysis with Surface Ensembles (SS, AG), pp. 1075–1078.
- ICML-2002-GoebelRB #composition #performance #predict
- A Unified Decomposition of Ensemble Loss for Predicting Ensemble Performance (MG, PJR, MB), pp. 211–218.
- ICPR-v2-2002-GargPH #classification #network
- Bayesian Networks as Ensemble of Classifiers (AG, VP, TSH), pp. 779–784.
- ICPR-v2-2002-KimPJKB #classification #using
- Pattern Classification Using Support Vector Machine Ensemble (HCK, SP, HMJ, DK, SYB), pp. 160–163.
- ICPR-v2-2002-WindeattA
- Tree Pruning for Output Coded Ensembles (TW, GA), pp. 92–95.
- ICPR-v4-2002-LamXS #difference #using
- Differentiation between Alphabetic and Numeric Data Using NN Ensembles (LL, QX, CYS), pp. 40–43.
- KDD-2002-BennettDM
- Exploiting unlabeled data in ensemble methods (KPB, AD, RM), pp. 289–296.
- KDD-2002-KolczSK #classification #performance #random
- Efficient handling of high-dimensional feature spaces by randomized classifier ensembles (AK, XS, JKK), pp. 307–313.
- CIKM-2001-GohCC #classification #image
- SVM Binary Classifier Ensembles for Image Classification (KG, EYC, KTC), pp. 395–402.
- KDD-2001-IndurkhyaW #classification #problem #rule-based
- Solving regression problems with rule-based ensemble classifiers (NI, SMW), pp. 287–292.
- KDD-2001-KeoghCP #approach #database #named #scalability
- Ensemble-index: a new approach to indexing large databases (EJK, SC, MJP), pp. 117–125.
- KDD-2001-StreetK #algorithm #classification #scalability #streaming
- A streaming ensemble algorithm (SEA) for large-scale classification (WNS, YK), pp. 377–382.
- MLDM-2001-IndurkhyaW #rule-based
- Rule-Based Ensemble Solutions for Regression (NI, SMW), pp. 62–72.
- LCTES-OM-2001-CadotKLRS #communication #embedded #multi #named
- ENSEMBLE: A Communication Layer for Embedded Multi-Processor Systems (SC, FK, KL, KvR, HJS), pp. 56–63.
- SAT-2001-NuallainRB #behaviour #predict #satisfiability
- Ensemble-based prediction of SAT search behaviour (BÓN, MdR, JvB), pp. 278–289.
- ICML-2000-EvgeniouPPP #bound #kernel #performance
- Bounds on the Generalization Performance of Kernel Machine Ensembles (TE, LPB, MP, TP), pp. 271–278.
- ICML-2000-FernG #empirical #learning #online
- Online Ensemble Learning: An Empirical Study (AF, RG), pp. 279–286.
- ICML-2000-Howe #comparison #representation
- Data as Ensembles of Records: Representation and Comparison (NRH), pp. 391–398.
- ICML-2000-PennockMGH #algorithm #learning
- A Normative Examination of Ensemble Learning Algorithms (DMP, PMRI, CLG, EH), pp. 735–742.
- SAC-2000-AlhamedL #analysis #approach #clustering #multi #using
- A Clustering Approach to Multi-Model Ensemble Analysis Using SAMEX Data (AA, SL), pp. 111–116.
- TACAS-1999-HickeyLR #proving #specification
- Specifications and Proofs for Ensemble Layers (JH, NAL, RvR), pp. 119–133.
- ICPR-1996-GuttaHTW #network #recognition #using
- Face recognition using ensembles of networks (SG, JH, BT, HW), pp. 50–54.
- CSCW-1992-Newman-WolfeWM #concurrent #editing #object-oriented
- Implicit Locking in the Ensemble Concurrent Object-Oriented Graphics Editor (RENW, MLW, MM), pp. 265–272.
- STOC-1982-NivatP
- Ensembles Reconnaissables de Mots Biinfinis (MN, DP), pp. 47–59.