BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × China
1 × Germany
1 × Japan
1 × Slovenia
1 × United Kingdom
12 × USA
2 × Finland
3 × Canada
Collaborated with:
A.Coates P.Abbeel J.Z.Kolter R.Raina D.Koller M.I.Jordan S.J.Russell H.Lee J.Ngiam C.D.Manning T.Wang D.J.Wu Z.Chen P.W.Koh C.Foo C.B.Do A.Madhavan M.Quigley E.Minkov W.W.Cohen J.Michels A.Saxena S.Shalev-Shwartz Y.Singer K.Toutanova A.X.Zheng D.Harada Q.V.Le B.Suresh R.Socher C.C.Lin R.B.Grosse R.Ranganath A.McCallum R.Rosenfeld T.M.Mitchell Y.Gu C.DuHadway A.Battle B.Packer T.Kremenek P.Twohey G.Back D.R.Engler S.T.Dumais M.Banko E.Brill J.J.Lin B.Huval B.C.Catanzaro A.Lahiri B.Prochnow A.Khosla M.Kim J.Nam A.M.Saxe M.Bhand M.Brzozowski K.Carattini S.R.Klemmer P.Mihelich J.Hu M.Ranzato R.Monga M.Devin G.Corrado K.Chen J.Dean B.Carpenter C.Case S.Satheesh
Talks about:
learn (26) featur (7) deep (6) use (6) unsupervis (5) reinforc (5) algorithm (3) network (3) select (3) model (3)

Person: Andrew Y. Ng

DBLP DBLP: Ng:Andrew_Y=

Contributed to:

ICML c3 20132013
KDD 20132013
ICML 20122012
ICPR 20122012
ICDAR 20112011
ICML 20112011
ICML 20092009
ICML 20082008
ICML 20072007
CHI 20062006
ICML 20062006
OSDI 20062006
SIGIR 20062006
ICML 20052005
ICML 20042004
SIGIR 20022002
ICML 20012001
SIGIR 20012001
ICML 20002000
ICML 19991999
ICML 19981998
ICML 19971997

Wrote 37 papers:

ICML-c3-2013-CoatesHWWCN #learning #off the shelf
Deep learning with COTS HPC systems (AC, BH, TW, DJW, BCC, AYN), pp. 1337–1345.
KDD-2013-NgK #education #online
The online revolution: education for everyone (AYN, DK), p. 2.
ICML-2012-LeRMDCCDN #learning #scalability #using
Building high-level features using large scale unsupervised learning (QVL, MR, RM, MD, GC, KC, JD, AYN), p. 69.
ICPR-2012-WangWCN #network #recognition
End-to-end text recognition with convolutional neural networks (TW, DJW, AC, AYN), pp. 3304–3308.
ICDAR-2011-CoatesCCSSWWN #detection #image #learning #recognition
Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning (AC, BC, CC, SS, BS, TW, DJW, AYN), pp. 440–445.
ICML-2011-CoatesN #encoding
The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization (AC, AYN), pp. 921–928.
ICML-2011-LeNCLPN #learning #on the #optimisation
On optimization methods for deep learning (QVL, JN, AC, AL, BP, AYN), pp. 265–272.
ICML-2011-NgiamCKN #energy #learning #modelling
Learning Deep Energy Models (JN, ZC, PWK, AYN), pp. 1105–1112.
ICML-2011-NgiamKKNLN #learning #multimodal
Multimodal Deep Learning (JN, AK, MK, JN, HL, AYN), pp. 689–696.
ICML-2011-SaxeKCBSN #learning #on the #random
On Random Weights and Unsupervised Feature Learning (AMS, PWK, ZC, MB, BS, AYN), pp. 1089–1096.
ICML-2011-SocherLNM #natural language #network #parsing #recursion
Parsing Natural Scenes and Natural Language with Recursive Neural Networks (RS, CCYL, AYN, CDM), pp. 129–136.
ICML-2009-FooDN #algorithm #learning #multi
A majorization-minimization algorithm for (multiple) hyperparameter learning (CSF, CBD, AYN), pp. 321–328.
ICML-2009-KolterN #polynomial
Near-Bayesian exploration in polynomial time (JZK, AYN), pp. 513–520.
ICML-2009-KolterN09a #difference #feature model #learning
Regularization and feature selection in least-squares temporal difference learning (JZK, AYN), pp. 521–528.
ICML-2009-LeeGRN #learning #network #scalability
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (HL, RBG, RR, AYN), pp. 609–616.
ICML-2009-RainaMN #learning #scalability #using
Large-scale deep unsupervised learning using graphics processors (RR, AM, AYN), pp. 873–880.
ICML-2008-CoatesAN #learning #multi
Learning for control from multiple demonstrations (AC, PA, AYN), pp. 144–151.
ICML-2008-KolterCNGD #learning #programming
Space-indexed dynamic programming: learning to follow trajectories (JZK, AC, AYN, YG, CD), pp. 488–495.
ICML-2007-RainaBLPN #learning #self
Self-taught learning: transfer learning from unlabeled data (RR, AB, HL, BP, AYN), pp. 759–766.
CHI-2006-BrzozowskiCKMHN #named #scheduling
groupTime: preference based group scheduling (MB, KC, SRK, PM, JH, AYN), pp. 1047–1056.
ICML-2006-AbbeelQN #learning #modelling #using
Using inaccurate models in reinforcement learning (PA, MQ, AYN), pp. 1–8.
ICML-2006-RainaNK #learning #using
Constructing informative priors using transfer learning (RR, AYN, DK), pp. 713–720.
OSDI-2006-KremenekTBNE #nondeterminism #specification
From Uncertainty to Belief: Inferring the Specification Within (TK, PT, GB, AYN, DRE), pp. 161–176.
SIGIR-2006-MinkovCN #ambiguity #email #graph #using
Contextual search and name disambiguation in email using graphs (EM, WWC, AYN), pp. 27–34.
ICML-2005-AbbeelN #learning
Exploration and apprenticeship learning in reinforcement learning (PA, AYN), pp. 1–8.
ICML-2005-MichelsSN #learning #using
High speed obstacle avoidance using monocular vision and reinforcement learning (JM, AS, AYN), pp. 593–600.
ICML-2004-PieterN #learning
Apprenticeship learning via inverse reinforcement learning (PA, AYN).
ICML-2004-Shalev-ShwartzSN #learning #online #pseudo
Online and batch learning of pseudo-metrics (SSS, YS, AYN).
ICML-2004-ToutanovaMN #dependence #learning #modelling #random #word
Learning random walk models for inducing word dependency distributions (KT, CDM, AYN).
SIGIR-2002-DumaisBBLN #question #web
Web question answering: is more always better? (STD, MB, EB, JJL, AYN), pp. 291–298.
ICML-2001-NgJ #classification #convergence #feature model
Convergence rates of the Voting Gibbs classifier, with application to Bayesian feature selection (AYN, MIJ), pp. 377–384.
SIGIR-2001-ZhengNJ #algorithm #analysis
Stable Algorithms for Link Analysis (AXZ, AYN, MIJ), pp. 258–266.
ICML-2000-NgR #algorithm #learning
Algorithms for Inverse Reinforcement Learning (AYN, SJR), pp. 663–670.
ICML-1999-NgHR #policy #theory and practice
Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping (AYN, DH, SJR), pp. 278–287.
ICML-1998-McCallumRMN #classification
Improving Text Classification by Shrinkage in a Hierarchy of Classes (AM, RR, TMM, AYN), pp. 359–367.
ICML-1998-Ng #feature model #learning #on the
On Feature Selection: Learning with Exponentially Many Irrelevant Features as Training Examples (AYN), pp. 404–412.
ICML-1997-Ng
Preventing “Overfitting” of Cross-Validation Data (AYN), pp. 245–253.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.