141 papers:
CASE-2015-BrisimiAZCP #detection- Sensing and classifying roadway obstacles: The street bump anomaly detection and decision support system (TSB, SA, YZ, CGC, ICP), pp. 1288–1293.
DAC-2015-YoonSMC #behaviour #detection #embedded #heatmap #memory management #realtime #using- Memory heat map: anomaly detection in real-time embedded systems using memory behavior (MKY, LS, SM, JC), p. 6.
VLDB-2015-FanRMGW #comprehension #consistency- Understanding the Causes of Consistency Anomalies in Apache Cassandra (HF, AR, MM, WMG, BW), pp. 810–821.
VLDB-2015-YingKSS #named- TreeScope: Finding Structural Anomalies In Semi-Structured Data (SY, FK, BS, DS), pp. 1904–1915.
ICML-2015-GornitzBK #detection #markov- Hidden Markov Anomaly Detection (NG, MLB, MK), pp. 1833–1842.
KDD-2015-LaptevAF #automation #detection #framework #scalability- Generic and Scalable Framework for Automated Time-series Anomaly Detection (NL, SA, IF), pp. 1939–1947.
KDD-2015-LiuC #challenge #detection #social #social media- Social Media Anomaly Detection: Challenges and Solutions (YL, SC), pp. 2317–2318.
SEKE-2015-HughesDH #detection #streaming- Detecting Reporting Anomalies in Streaming Sensing Systems (SH, YD, JOH), pp. 427–432.
SAC-2015-AttiaTHKTC #detection- On-device anomaly detection for resource-limited systems (MBA, CT, AHL, BK, VT, MC), pp. 548–554.
SAC-2015-FernandesPCRP #detection #metaheuristic #network #statistics- Statistical, forecasting and metaheuristic techniques for network anomaly detection (GF, EHMP, LFC, JJPCR, MLPJ), pp. 701–707.
SAC-2015-Rekha #big data #detection #performance #using- A fast support vector data description system for anomaly detection using big data (AGR), pp. 931–932.
ESEC-FSE-2015-SafiSHM #detection- Detecting event anomalies in event-based systems (GS, AS, WGJH, NM), pp. 25–37.
CSMR-WCRE-2014-PerscheidFH #debugging #execution- Follow the path: Debugging state anomalies along execution histories (MP, TF, RH), pp. 124–133.
SCAM-2014-MurtazaHKC #automation #detection- Total ADS: Automated Software Anomaly Detection System (SSM, AHL, WK, MC), pp. 83–88.
VISSOFT-2014-KuleszSB #spreadsheet- Integrating Anomaly Diagnosis Techniques into Spreadsheet Environments (DK, JS, FB), pp. 11–19.
ICEIS-v2-2014-JulianoTS #detection #metric #object-oriented #using- Detection of Software Anomalies Using Object-oriented Metrics (RCJ, BANT, MSS), pp. 241–248.
ICML-c2-2014-ClemenconR #ranking- Anomaly Ranking as Supervised Bipartite Ranking (SC, SR), pp. 343–351.
ICPR-2014-ChenSPS #detection #energy #statistics- Statistical Anomaly Detection in Mean and Variation of Energy Consumption (BC, MS, JP, AS), pp. 3570–3575.
ICPR-2014-LuWMST #detection #modelling- Anomaly Detection through Spatio-temporal Context Modeling in Crowded Scenes (TL, LW, XM, PS, CLT), pp. 2203–2208.
ICPR-2014-WangFC #detection- Traffic Camera Anomaly Detection (YKW, CTF, JFC), pp. 4642–4647.
KDD-2014-BabaieCA #detection #online- Sleep analytics and online selective anomaly detection (TB, SC, RGA), pp. 362–371.
KDD-2014-GunnemannGF #detection #evolution #probability #rating #robust- Detecting anomalies in dynamic rating data: a robust probabilistic model for rating evolution (SG, NG, CF), pp. 841–850.
KDD-2014-YuH0 #analysis #detection #named #social #social media- GLAD: group anomaly detection in social media analysis (QRY, XH, YL), pp. 372–381.
SEKE-2014-LiuTA #database #detection- Detecting Anomaly in the Usage of Database Attribute (KL, HBKT, YA), pp. 705–710.
SAC-2014-FerreiraBBAG #architecture #case study #detection #effectiveness- Detecting architecturally-relevant code anomalies: a case study of effectiveness and effort (MF, EAB, IMB, RA, AG), pp. 1158–1163.
SAC-2014-MazelFF #comparison #detection #diagrams #network #visual notation- Visual comparison of network anomaly detectors with chord diagrams (JM, RF, KF), pp. 473–480.
CASE-2013-LinG #detection #framework #network #optimisation #synthesis- Synthesis and optimization of a Bayesian belief network based observation platform for anomaly detection under partial and unreliable observations (WCL, HEG), pp. 51–58.
DATE-2013-DeOrioLBB #debugging #detection #machine learning- Machine learning-based anomaly detection for post-silicon bug diagnosis (AD, QL, MB, VB), pp. 491–496.
ICDAR-2013-GebhardtGSD #authentication #detection #documentation #using- Document Authentication Using Printing Technique Features and Unsupervised Anomaly Detection (JG, MG, FS, AD), pp. 479–483.
CSMR-2013-BertranGCS #architecture #detection- Enhancing the Detection of Code Anomalies with Architecture-Sensitive Strategies (IMB, AG, CC, AvS), pp. 177–186.
CSMR-2013-GhaithWPM #analysis #detection #independence #performance #testing- Profile-Based, Load-Independent Anomaly Detection and Analysis in Performance Regression Testing of Software Systems (SG, MW, PP, JM), pp. 379–383.
MSR-2013-NadiDTHL #how #linux #question #variability #what- Linux variability anomalies: what causes them and how do they get fixed? (SN, CD, RT, RCH, DL), pp. 111–120.
HIMI-HSM-2013-SaitohI #detection #learning #using #visualisation- Visualization of Anomaly Data Using Peculiarity Detection on Learning Vector Quantization (FS, SI), pp. 181–188.
ICSE-2013-Jonsson #machine learning #performance #scalability #using- Increasing anomaly handling efficiency in large organizations using applied machine learning (LJ), pp. 1361–1364.
ICST-2013-Mercaldo #database #identification #process- Identification of Anomalies in Processes of Database Alteration (FM), pp. 513–514.
SIGMOD-2012-ZellagK #consistency #detection #named #realtime- ConsAD: a real-time consistency anomalies detector (KZ, BK), pp. 641–644.
CSMR-2012-BertranAGCS #architecture #identification #on the- On the Relevance of Code Anomalies for Identifying Architecture Degradation Symptoms (IMB, RA, AG, CC, AvS), pp. 277–286.
CSMR-2012-DohringH #adaptation #taxonomy #workflow- Anomalies in Rule-Adapted Workflows — A Taxonomy and Solutions for vBPMN (MD, SH), pp. 117–126.
CSMR-2012-MurtazaSHC #comparison #identification #kernel #on the- On the Comparison of User Space and Kernel Space Traces in Identification of Software Anomalies (SSM, AS, AHL, MC), pp. 127–136.
CSMR-2012-NadiH #detection #linux #mining #variability- Mining Kbuild to Detect Variability Anomalies in Linux (SN, RCH), pp. 107–116.
ICSM-2012-BertranACGS #architecture #identification- Supporting the identification of architecturally-relevant code anomalies (IMB, RA, EC, AG, AvS), pp. 662–665.
CIKM-2012-AkogluTVF #category theory #detection #performance #reliability- Fast and reliable anomaly detection in categorical data (LA, HT, JV, CF), pp. 415–424.
CIKM-2012-DaiZLP #mining #web- Mining coherent anomaly collections on web data (HD, FZ, EPL, HP), pp. 1557–1561.
CIKM-2012-HuangQYY #algorithm #detection #robust- Local anomaly descriptor: a robust unsupervised algorithm for anomaly detection based on diffusion space (HH, HQ, SY, DY), pp. 405–414.
ICPR-2012-ChauhanL #distance- Manhattan-Pyramid Distance: A solution to an anomaly in pyramid matching by minimization (AC, LSL), pp. 2668–2672.
ICPR-2012-MaLXS #detection #image #using- Anomaly detection with spatio-temporal context using depth images (XM, TL, FX, FS), pp. 2590–2593.
SEKE-2012-GallegosG #detection #tool support- Tool Support for Anomaly Detection in Scientific Sensor Data (IG, AQG), pp. 678–683.
SEKE-2012-WangZWZZ #component #detection #online- Online Anomaly Detection for Components in OSGi-based Software (TW, WZ, JW, JZ, HZ), pp. 188–193.
ICSE-2012-LuciaLJB #refinement- Active refinement of clone anomaly reports (L, DL, LJ, AB), pp. 397–407.
OSDI-2012-AttariyanCF #automation #named #performance- X-ray: Automating Root-Cause Diagnosis of Performance Anomalies in Production Software (MA, MC, JF), pp. 307–320.
ICST-2012-JonssonBSE #automation #scalability #towards #using- Towards Automated Anomaly Report Assignment in Large Complex Systems Using Stacked Generalization (LJ, DB, KS, SE), pp. 437–446.
CASE-2011-BroderickAT #detection #formal method #industrial- Anomaly detection without a pre-existing formal model: Application to an industrial manufacturing system (JAB, LVA, DMT), pp. 169–174.
ICPC-2011-HuangW #detection #monitoring #process- Anomaly Detection by Monitoring Filesystem Activities (LH, KW), pp. 221–222.
WCRE-2011-NadiH #linux #mining- Make it or Break it: Mining Anomalies from Linux Kbuild (SN, RCH), pp. 315–324.
CIKM-2011-DavisLMR #detection #graph- Detecting anomalies in graphs with numeric labels (MD, WL, PCM, GR), pp. 1197–1202.
KDD-2011-JiangFH #data type #graph #locality #network- Anomaly localization for network data streams with graph joint sparse PCA (RJ, HF, JH), pp. 886–894.
MLDM-2011-WuW #category theory #detection- Parameter-Free Anomaly Detection for Categorical Data (SW, SW), pp. 112–126.
SAC-2011-FontugneF #adaptation #detection- A Hough-transform-based anomaly detector with an adaptive time interval (RF, KF), pp. 471–477.
SAC-2011-MagalhaesS #analysis #performance- Root-cause analysis of performance anomalies in web-based applications (JPM, LMS), pp. 209–216.
SAC-2011-TariqBGMTAZ #correlation #identification- Identifying the provenance of correlated anomalies (DT, BB, AG, SM, RT, AA, FZ), pp. 224–229.
ICTSS-2011-ShinboH #communication #detection #empirical #mobile- An Empirical Study on Applying Anomaly Detection Technique to Detecting Software and Communication Failures in Mobile Data Communication Services (HS, TH), pp. 195–208.
ISSTA-2011-HuangZ #concurrent #persuasion #predict- Persuasive prediction of concurrency access anomalies (JH, CZ), pp. 144–154.
ISSTA-2011-PradelG #detection #order- Detecting anomalies in the order of equally-typed method arguments (MP, TRG), pp. 232–242.
SOFTVIS-2010-LinTOB #comprehension #profiling #towards #using- Towards anomaly comprehension: using structural compression to navigate profiling call-trees (SL, FT, TCO, LJB), pp. 103–112.
ICPR-2010-FengZH #detection #learning #online #self- Online Learning with Self-Organizing Maps for Anomaly Detection in Crowd Scenes (JF, CZ, PH), pp. 3599–3602.
ICPR-2010-KhanWCKC #video- Lattice-Based Anomaly Rectification for Sport Video Annotation (AK, DW, TdC, JK, WJC), pp. 4372–4375.
ICPR-2010-MehmoodN #detection #kernel #using- Anomaly Detection for Longwave FLIR Imagery Using Kernel Wavelet-RX (AM, NMN), pp. 1385–1388.
KDD-2010-DasMSO #algorithm #case study #detection #kernel #learning #multi #safety- Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study (SD, BLM, ANS, NCO), pp. 47–56.
SAC-2010-TeixeiraM #data type #detection- Data stream anomaly detection through principal subspace tracking (PHdST, RLM), pp. 1609–1616.
HPCA-2010-BiswasRMACJPPS #metric #using- Explaining cache SER anomaly using DUE AVF measurement (AB, CR, SSM, VA, LC, AJ, AEP, MP, NS), pp. 1–12.
ISSTA-2010-GruskaWZ #detection #learning #lightweight- Learning from 6, 000 projects: lightweight cross-project anomaly detection (NG, AW, AZ), pp. 119–130.
ASE-2009-DallmeierZM #behaviour #generative- Generating Fixes from Object Behavior Anomalies (VD, AZ, BM), pp. 550–554.
VLDB-2009-FeketeGA- Quantifying Isolation Anomalies (AF, SG, JPA), pp. 467–478.
CSMR-2009-MarwedeRHH #automation #behaviour #correlation #distributed #scalability- Automatic Failure Diagnosis Support in Distributed Large-Scale Software Systems Based on Timing Behavior Anomaly Correlation (NM, MR, AvH, WH), pp. 47–58.
KDD-2009-BuCFL #monitoring #performance- Efficient anomaly monitoring over moving object trajectory streams (YB, LC, AWCF, DL), pp. 159–168.
KDD-2009-HiroseYNF #detection #equation #network- Network anomaly detection based on Eigen equation compression (SH, KY, TN, RF), pp. 1185–1194.
KDD-2009-PrakashVAFF #internet #named- BGP-lens: patterns and anomalies in internet routing updates (BAP, NV, DA, MF, CF), pp. 1315–1324.
KDD-2009-WuSJRG #detection #framework #performance- A LRT framework for fast spatial anomaly detection (MW, XS, CJ, SR, JG), pp. 887–896.
MLDM-2009-XiongBS #detection- A Wavelet-Based Method for Detecting Seismic Anomalies in Remote Sensing Satellite Data (PX, YB, XS), pp. 569–581.
ASPLOS-2009-DimitrovZ #approach #automation #debugging #predict #validation- Anomaly-based bug prediction, isolation, and validation: an automated approach for software debugging (MD, HZ), pp. 61–72.
ISSTA-2009-BabenkoMP #automation #detection #named- AVA: automated interpretation of dynamically detected anomalies (AB, LM, FP), pp. 237–248.
CSMR-2008-DhambriSP #design #detection #visual notation- Visual Detection of Design Anomalies (KD, HAS, PP), pp. 279–283.
ICEIS-AIDSS-2008-BezerraW #algorithm #detection #process- Anomaly Detection Algorithms in Business Process Logs (FdLB, JW), pp. 11–18.
ICEIS-AIDSS-2008-BringasPPS- Bayesian-Networks-Based Misuse and Anomaly Prevention System (PGB, YKP, SP, PS), pp. 62–69.
ICEIS-J-2008-BringasP- Next-Generation Misuse and Anomaly Prevention System (PGB, YKP), pp. 117–129.
CIKM-2008-MihailaSL #incremental- Anomaly-free incremental output in stream processing (GAM, IS, CAL), pp. 359–368.
KDD-2008-DasSN #category theory #dataset #detection- Anomaly pattern detection in categorical datasets (KD, JGS, DBN), pp. 169–176.
SAC-2008-AbbesBR #detection- An inference system for detecting firewall filtering rules anomalies (TA, AB, MR), pp. 2122–2128.
SAC-2008-BezerraW #algorithm #detection #process- Anomaly detection algorithms in logs of process aware systems (FdLB, JW), pp. 951–952.
SAC-2008-KuangZ #algorithm #detection #using- An anomaly intrusion detection method using the CSI-KNN algorithm (LK, MZ), pp. 921–926.
SAC-2008-LiG #detection #network #optimisation #using- TCM-KNN scheme for network anomaly detection using feature-based optimizations (YL, LG), pp. 2103–2109.
DATE-2007-NarayanasamyCC #fault #predict- Transient fault prediction based on anomalies in processor events (SN, AKC, BC), pp. 1140–1145.
VLDB-2007-JorwekarFRS #automation #detection- Automating the Detection of Snapshot Isolation Anomalies (SJ, AF, KR, SS), pp. 1263–1274.
VLDB-2007-LiH #approximate #mining #multi- Mining Approximate Top-K Subspace Anomalies in Multi-Dimensional Time-Series Data (XL, JH), pp. 447–458.
KDD-2007-TandonC #detection #network #validation- Weighting versus pruning in rule validation for detecting network and host anomalies (GT, PKC), pp. 697–706.
MLDM-2007-MicarelliS #approach #detection- A Case-Based Approach to Anomaly Intrusion Detection (AM, GS), pp. 434–448.
SEKE-2007-GokhaleL #detection #multi- Multi-level Anomaly Detection with Application-Level Data (SSG, JL), p. 718–?.
ESEC-FSE-2007-WasylkowskiZL #detection- Detecting object usage anomalies (AW, AZ, CL), pp. 35–44.
PLDI-2006-FeiM #execution #monitoring #named #runtime- Artemis: practical runtime monitoring of applications for execution anomalies (LF, SPM), pp. 84–95.
AdaEurope-2006-BurgstallerBM #ada #detection #static analysis- Static Detection of Access Anomalies in Ada95 (BB, JB, RM), pp. 40–55.
ICPR-v4-2006-AuSC #detection #video- Anomaly Detection for Video Surveillance Applications (CEA, SS, JJC), pp. 888–891.
SEKE-2006-ShinX #component #detection #self- Enhanced Anomaly Detection in Self-Healing Components (MES, YX), pp. 485–488.
SAC-2006-ValeurVKK #web- An anomaly-driven reverse proxy for web applications (FV, GV, CK, EK), pp. 361–368.
ASPLOS-2006-ChilimbiG #debugging #detection #identification #named #using- HeapMD: identifying heap-based bugs using anomaly detection (TMC, VG), pp. 219–228.
CSMR-2005-RiccaT #bibliography #case study #detection #web- Anomaly Detection in Web Applications: A Review of Already Conducted Case Studies (FR, PT), pp. 385–394.
KDD-2005-FujimakiYM #approach #detection #kernel #problem #using- An approach to spacecraft anomaly detection problem using kernel feature space (RF, TY, KM), pp. 401–410.
SAC-2005-ChenCKM #realtime #scheduling- Real-time task scheduling anomaly: observations and prevention (YSC, LPC, TWK, AKM), pp. 897–898.
FATES-2005-Huima #black box #testing- A Note on an Anomaly in Black-Box Testing (AH), pp. 47–61.
IWPC-2004-WuH #modelling- Resolving Linkage Anomalies in Extracted Software System Models (JW, RCH), pp. 241–245.
KDD-2004-IdeK #detection- Eigenspace-based anomaly detection in computer systems (TI, HK), pp. 440–449.
SAC-2004-AdamJA #dataset #detection- Neighborhood based detection of anomalies in high dimensional spatio-temporal sensor datasets (NRA, VPJ, VA), pp. 576–583.
SAC-2004-MiliciaS #inheritance #years after- The inheritance anomaly: ten years after (GM, VS), pp. 1267–1274.
ICML-2003-WongMCW #detection #network- Bayesian Network Anomaly Pattern Detection for Disease Outbreaks (WKW, AWM, GFC, MMW), pp. 808–815.
KDD-2003-NobleC #detection #graph- Graph-based anomaly detection (CCN, DJC), pp. 631–636.
SAC-2003-Mahoney #detection #network- Network Traffic Anomaly Detection Based on Packet Bytes (MVM), pp. 346–350.
KDD-2002-SequeiraZ #data mining #mining #named- ADMIT: anomaly-based data mining for intrusions (KS, MJZ), pp. 386–395.
SAC-2002-KrugelTK #detection #network- Service specific anomaly detection for network intrusion detection (CK, TT, EK), pp. 201–208.
SAC-2002-SeleznyovM #detection #learning- Learning temporal patterns for anomaly intrusion detection (AS, OM), pp. 209–213.
ICSE-2002-HangalL #automation #debugging #detection #using- Tracking down software bugs using automatic anomaly detection (SH, MSL), pp. 291–301.
ICSE-2002-RazKS #data flow #detection #online #semantics- Semantic anomaly detection in online data sources (OR, PK, MS), pp. 302–312.
ICML-2000-Eskin #detection #probability #semistructured data #using- Anomaly Detection over Noisy Data using Learned Probability Distributions (EE), pp. 255–262.
ICML-2000-Towell #detection- Local Expert Autoassociators for Anomaly Detection (GGT), pp. 1023–1030.
SAC-2000-RiveroDL #detection #network #static analysis #strict- Static Detection of Sources of Dynamic Anomalies in a Network of Referential Integrity Restrictions (LCR, JHD, DL), pp. 333–339.
HCI-CCAD-1999-TakanoSS #behaviour #simulation- Intellectual simulation of operating team behavior in coping with anomalies occurring at commercial nuclear power plants (KT, WS, KS), pp. 1201–1205.
SIGIR-1999-Eastman #internet #precise- 30, 000 Hits may be Better than 300: Precision Anomalies in Internet Searches (poster abstract) (CME), pp. 313–314.
AdaEurope-1998-SchumacherN #ada #how #inheritance- How to Avoid the Inheritance Anomaly in Ada (GS, WN), pp. 53–64.
ECOOP-1996-LechnerLNW #concurrent #inheritance #reuse- (Objects + Concurrency) & Reusability — A Proposal to Circumvent the Inheritance Anomaly (UL, CL, FN, MW), pp. 232–247.
ECOOP-1994-AksitBSB #inheritance #realtime #specification- Real-Time Specification Inheritance Anomalies and Real-Time Filters (MA, JB, WvdS, LB), pp. 386–407.
AdaEurope-1993-Wild #inheritance- Avoiding Anomalies in Inheritance Schemes (FHWI), pp. 108–113.
ECOOP-1993-Meseguer #concurrent #inheritance #object-oriented #programming- Solving the Inheritance Anomaly in Concurrent Object-Oriented Programming (JM), pp. 220–246.
ESEC-1993-CheungK #analysis #detection #distributed #source code- Tractable Flow Analysis for Anomaly Detection in Distributed Programs (SCC, JK), pp. 283–300.
ASPLOS-1991-MinC #detection #performance- An Efficient Cache-Based Access Anomaly Detection Scheme (SLM, JDC), pp. 235–244.
PPoPP-1990-DinningS #algorithm #comparison #detection #empirical #monitoring- An Empirical Comparison of Monitoring Algorithms for Access Anomaly Detection (AD, ES), pp. 1–10.
PLDI-1989-Schonberg #detection #on the fly- On-The-Fly Detection of Access Anomalies (ES), pp. 285–297.
Best-of-PLDI-1989-Schonberg89a #detection #on the fly- On-the-fly detection of access anomalies (with retrospective) (ES), pp. 313–327.
VLDB-1987-MartinNA #database- Dealing with Temporal Schema Anomalies in History Databases (NGM, SBN, RA), pp. 177–184.
POPL-1986-JohnsonW #approach #incremental #type inference- A Maximum-Flow Approach to Anomaly Isolation in Unification-Based Incremental Type Inference (GFJ, JAW), pp. 44–57.
ICSE-1984-Forman #algebra #data flow #detection- An Algebra for Data Flow Anomaly Detection (IRF), pp. 278–287.
PODS-1983-BeeriK #database- Elimination of Intersection Anomalies from Database Schemes (CB, MK), pp. 340–351.
ICSE-1979-RiddleBDE #concurrent #detection #source code- Anomaly Detection in Concurrent Programs (WER, GB, CD, BE), pp. 265–273.
STOC-1978-CaseS #induction- Anomaly Hierarchies of Mechanized Inductive Inference (JC, CS), pp. 314–319.