BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Used together with:
cluster (42)
data (24)
base (23)
use (22)
method (19)

Stem subspac$ (all stems)

152 papers:

CASECASE-2015-ZonEHJVSB #detection #multi #realtime #using
Real-time collision detection for multiple packaging robots using monotonicity of configuration subspaces (RvZ, DE, DH, IJ, RV, RIS, KB), pp. 1638–1643.
ICMLICML-2015-BahadoriKFL #clustering #functional
Functional Subspace Clustering with Application to Time Series (MTB, DCK, YF, YL), pp. 228–237.
ICMLICML-2015-WangWLCW #learning #multi #segmentation
Multi-Task Learning for Subspace Segmentation (YW, DPW, QL, WC, IJW), pp. 1209–1217.
ICMLICML-2015-WangWS #analysis #clustering
A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data (YW, YXW, AS), pp. 1422–1431.
ICMLICML-2015-WangZ #clustering #named #parametricity
DP-space: Bayesian Nonparametric Subspace Clustering with Small-variance Asymptotics (YW, JZ), pp. 862–870.
ICMLICML-2015-YangRV #clustering
Sparse Subspace Clustering with Missing Entries (CY, DR, RV), pp. 2463–2472.
ICMLICML-2015-YouV #geometry
Geometric Conditions for Subspace-Sparse Recovery (CY, RV), pp. 1585–1593.
ICMLICML-2015-ZhouZ #problem
Safe Subspace Screening for Nuclear Norm Regularized Least Squares Problems (QZ, QZ), pp. 1103–1112.
KDDKDD-2015-PengKLC #approximate #clustering #rank #using
Subspace Clustering Using Log-determinant Rank Approximation (CP, ZK, HL, QC), pp. 925–934.
DATEDATE-2014-YuSHEAB #estimation #performance #physics
Efficient performance estimation with very small sample size via physical subspace projection and maximum a posteriori estimation (LY, SS, CH, IME, DAA, DSB), pp. 1–6.
ICALPICALP-v1-2014-NelsonN #bound
Lower Bounds for Oblivious Subspace Embeddings (JN, HLN), pp. 883–894.
CIKMCIKM-2014-NtoutsiSRK #clustering #difference #quote #recommendation
“Strength Lies in Differences”: Diversifying Friends for Recommendations through Subspace Clustering (EN, KS, KR, HPK), pp. 729–738.
CIKMCIKM-2014-TaoIWS #analysis #canonical #correlation
Exploring Shared Subspace and Joint Sparsity for Canonical Correlation Analysis (LT, HHSI, YW, XS), pp. 1887–1890.
ICMLICML-c1-2014-HsiehO
Nuclear Norm Minimization via Active Subspace Selection (CJH, PAO), pp. 575–583.
ICPRICPR-2014-Ahn #adaptation #online #performance #robust
Fast Adaptive Robust Subspace Tracking for Online Background Subtraction (JHA), pp. 2555–2559.
ICPRICPR-2014-ArvanitopoulosBT #analysis #learning
Laplacian Support Vector Analysis for Subspace Discriminative Learning (NA, DB, AT), pp. 1609–1614.
ICPRICPR-2014-DengZS #learning #recognition #speech
Linked Source and Target Domain Subspace Feature Transfer Learning — Exemplified by Speech Emotion Recognition (JD, ZZ, BWS), pp. 761–766.
ICPRICPR-2014-FangZ #classification #learning
Cross Domain Shared Subspace Learning for Unsupervised Transfer Classification (ZF, ZZ), pp. 3927–3932.
ICPRICPR-2014-Martinez-VargasHAAC #component #constraints #probability #recursion
Recursive Separation of Stationary Components by Subspace Projection and Stochastic Constraints (JDMV, CCH, AMÁM, CDAM, GCD), pp. 3469–3474.
KDDKDD-2014-GunnemannFRS #clustering #multi #named
SMVC: semi-supervised multi-view clustering in subspace projections (SG, IF, MR, TS), pp. 253–262.
KDDKDD-2014-HeFKMP #category theory #clustering
Relevant overlapping subspace clusters on categorical data (XH, JF, BK, STM, CP), pp. 213–222.
MLDMMLDM-2014-ShahamSB #fault #performance
Efficient Error Setting for Subspace Miners (ES, DS, BBM), pp. 1–15.
SIGIRSIGIR-2014-LengCL #image #learning #random #retrieval #scalability
Random subspace for binary codes learning in large scale image retrieval (CL, JC, HL), pp. 1031–1034.
ICDARICDAR-2013-HigaH #classification #image #recognition
Local Subspace Classifier with Transformation Invariance for Appearance-Based Character Recognition in Natural Images (KH, SH), pp. 533–537.
ICDARICDAR-2013-SuL #learning #recognition
Discriminative Weighting and Subspace Learning for Ensemble Symbol Recognition (FS, TL), pp. 1088–1092.
STOCSTOC-2013-MengM #linear #robust
Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression (XM, MWM), pp. 91–100.
CIKMCIKM-2013-KellerMWB #adaptation #analysis #flexibility
Flexible and adaptive subspace search for outlier analysis (FK, EM, AW, KB), pp. 1381–1390.
ICMLICML-c1-2013-WangX #clustering
Noisy Sparse Subspace Clustering (YXW, HX), pp. 89–97.
ICMLICML-c3-2013-BaktashmotlaghHBLS #analysis #classification #video
Non-Linear Stationary Subspace Analysis with Application to Video Classification (MB, MTH, AB, BCL, MS), pp. 450–458.
VLDBVLDB-2013-MouratidisP12 #query
Computing Immutable Regions for Subspace Top-k Queries (KM, HP), pp. 73–84.
STOCSTOC-2012-AaronsonC #quantum
Quantum money from hidden subspaces (SA, PC), pp. 41–60.
STOCSTOC-2012-DvirL #set
Subspace evasive sets (ZD, SL), pp. 351–358.
CIKMCIKM-2012-ZhangLZW #recommendation
Relation regularized subspace recommending for related scientific articles (QZ, JL, ZZ, LW), pp. 2503–2506.
ICMLICML-2012-GuoX #classification #learning #multi
Cross Language Text Classification via Subspace Co-regularized Multi-view Learning (YG, MX), p. 120.
ICMLICML-2012-LiLJX #clustering #re-engineering
Groupwise Constrained Reconstruction for Subspace Clustering (RL, BL, CJ, XX), p. 25.
ICPRICPR-2012-JiS #clustering #robust #segmentation
Robust motion segmentation via refined sparse subspace clustering (HJ, FS), pp. 1546–1549.
ICPRICPR-2012-LiPMH #classification #email #incremental #learning #using
Business email classification using incremental subspace learning (ML, YP, RM, HYH), pp. 625–628.
ICPRICPR-2012-MoriyamaAS #analysis #using
Face analysis of aggressive moods in automobile driving using mutual subspace method (TM, KA, NS), pp. 2898–2901.
ICPRICPR-2012-TuH #invariant #matrix #recognition
Dual subspace nonnegative matrix factorization for person-invariant facial expression recognition (YHT, CTH), pp. 2391–2394.
ICPRICPR-2012-WeiY #representation #segmentation
Subspace segmentation with a Minimal Squared Frobenius Norm Representation (SW, YY), pp. 3509–3512.
KDDKDD-2012-GunnemannFS #clustering #modelling #multi #using
Multi-view clustering using mixture models in subspace projections (SG, IF, TS), pp. 132–140.
KDDKDD-2012-GunnemannFVS #clustering #correlation
Subspace correlation clustering: finding locally correlated dimensions in subspace projections of the data (SG, IF, KV, TS), pp. 352–360.
MLDMMLDM-2012-PitelisT #learning
Discriminant Subspace Learning Based on Support Vectors Machines (NP, AT), pp. 198–212.
CASECASE-2011-Aguayo-LaraRR #invariant #petri net
Invariant subspaces and sensor placement for observability in Continuous Timed Petri Nets (EAL, ART, JJRL), pp. 607–612.
STOCSTOC-2011-SohlerW
Subspace embeddings for the L1-norm with applications (CS, DPW), pp. 755–764.
CIKMCIKM-2011-GunnemannFMAS #clustering #evaluation #metric
External evaluation measures for subspace clustering (SG, IF, EM, IA, TS), pp. 1363–1372.
CIKMCIKM-2011-MullerAGS #clustering #scalability
Scalable density-based subspace clustering (EM, IA, SG, TS), pp. 1077–1086.
CIKMCIKM-2011-VinzamuriK #classification #convergence #design #using
Designing an ensemble classifier over subspace classifiers using iterative convergence routine (BV, KK), pp. 693–698.
CIKMCIKM-2011-ZhangJJ #framework #mining
Promotional subspace mining with EProbe framework (YZ, YJ, WJ), pp. 2185–2188.
ECIRECIR-2011-Rehurek #analysis #semantics
Subspace Tracking for Latent Semantic Analysis (RR), pp. 289–300.
ICEISICEIS-DISI-2010-MoraesZF #algorithm #concept #distributed
A Distributed Algorithm for Formal Concepts Processing based on Search Subspaces (NRMdM, LEZ, HCF), pp. 105–111.
CIKMCIKM-2010-ChatterjeeBR #clustering
Feature subspace transformations for enhancing k-means clustering (AC, SB, PR), pp. 1801–1804.
CIKMCIKM-2010-LuETP #clustering #video #visualisation
Visualization and clustering of crowd video content in MPCA subspace (HL, HLE, MT, KNP), pp. 1777–1780.
CIKMCIKM-2010-MullerSS #adaptation #ranking
Adaptive outlierness for subspace outlier ranking (EM, MS, TS), pp. 1629–1632.
ECIRECIR-2010-PiwowarskiFMLR #documentation
Filtering Documents with Subspaces (BP, IF, YM, ML, KvR), pp. 615–618.
ICMLICML-2010-LiuLY #rank #representation #robust #segmentation
Robust Subspace Segmentation by Low-Rank Representation (GL, ZL, YY), pp. 663–670.
ICPRICPR-2010-GangehKD #categorisation #random
Random Subspace Method in Text Categorization (MJG, MSK, RPWD), pp. 2049–2052.
ICPRICPR-2010-HanCR #categorisation #image #low level
Image Categorization by Learned Nonlinear Subspace of Combined Visual-Words and Low-Level Features (XHH, YWC, XR), pp. 3037–3040.
ICPRICPR-2010-HarandiAABL #random #recognition
Directed Random Subspace Method for Face Recognition (MTH, MNA, BNA, AB, BCL), pp. 2688–2691.
ICPRICPR-2010-Hotta #classification #using #visual notation #word
Scene Classification Using Local Co-occurrence Feature in Subspace Obtained by KPCA of Local Blob Visual Words (KH), pp. 4230–4233.
ICPRICPR-2010-PaivaT #detection #image #using
Detection of Salient Image Points Using Principal Subspace Manifold Structure (ARCP, TT), pp. 1389–1392.
ICPRICPR-2010-SonaA #multi #random
Multivariate Brain Mapping by Random Subspaces (DS, PA), pp. 2576–2579.
ICPRICPR-2010-StrucDP #recognition #robust
Confidence Weighted Subspace Projection Techniques for Robust Face Recognition in the Presence of Partial Occlusions (VS, SD, NP), pp. 1334–1338.
ICPRICPR-2010-YamashitaW #correlation #matrix
Subspace Methods with Globally/Locally Weighted Correlation Matrix (YY, TW), pp. 4259–4262.
ICPRICPR-2010-YinYC #metric
Enhanced Measurement Model for Subspace-Based Tracking (SY, HJY, JYC), pp. 3492–3495.
KDDKDD-2010-GuptaPATV #learning #retrieval #social #social media
Nonnegative shared subspace learning and its application to social media retrieval (SKG, DQP, BA, TT, SV), pp. 1169–1178.
SACSAC-2010-TeixeiraM #data type #detection
Data stream anomaly detection through principal subspace tracking (PHdST, RLM), pp. 1609–1616.
ICDARICDAR-2009-Abd-AlmageedKD #documentation #linear #using
Page Rule-Line Removal Using Linear Subspaces in Monochromatic Handwritten Arabic Documents (WAA, JK, DSD), pp. 768–772.
VLDBVLDB-2009-MullerGAS #clustering
Evaluating Clustering in Subspace Projections of High Dimensional Data (EM, SG, IA, TS), pp. 1270–1281.
STOCSTOC-2009-Ben-SassonK
Affine dispersers from subspace polynomials (EBS, SK), pp. 65–74.
CIKMCIKM-2009-GunnemannMFS #concept #detection #orthogonal
Detection of orthogonal concepts in subspaces of high dimensional data (SG, EM, IF, TS), pp. 1317–1326.
CIKMCIKM-2009-GuZ #clustering
Subspace maximum margin clustering (QG, JZ), pp. 1337–1346.
VLDBVLDB-2008-KriegelKZ #clustering #correlation #detection
Detecting clusters in moderate-to-high dimensional data: subspace clustering, pattern-based clustering, and correlation clustering (HPK, PK, AZ), pp. 1528–1529.
CIKMCIKM-2008-AssentKMS #clustering #named #performance
EDSC: efficient density-based subspace clustering (IA, RK, EM, TS), pp. 1093–1102.
CIKMCIKM-2008-LeeL #clustering #data type #multi #online
A coarse-grain grid-based subspace clustering method for online multi-dimensional data streams (JWL, WSL), pp. 1521–1522.
CIKMCIKM-2008-PengLS #adaptation #clustering #multi
Clustering multi-way data via adaptive subspace iteration (WP, TL, BS), pp. 1519–1520.
CIKMCIKM-2008-ZhangPW #named
REDUS: finding reducible subspaces in high dimensional data (XZ, FP, WW), pp. 961–970.
ICMLICML-2008-HamL #analysis #learning
Grassmann discriminant analysis: a unifying view on subspace-based learning (JH, DDL), pp. 376–383.
ICPRICPR-2008-BianT
Harmonic mean for subspace selection (WB, DT), pp. 1–4.
ICPRICPR-2008-KobayashiO #strict
Cone-restricted subspace methods (TK, NO), pp. 1–4.
ICPRICPR-2008-NaYKC #learning
Relevant pattern selection for subspace learning (JHN, SMY, MK, JYC), pp. 1–4.
ICPRICPR-2008-Sakai #approach #classification #incremental #monte carlo
Monte Carlo subspace method: An incremental approach to high-dimensional data classification (TS), pp. 1–4.
ICPRICPR-2008-WuF #3d #classification #learning #multi #using
Multiple view based 3D object classification using ensemble learning of local subspaces (JW, KF), pp. 1–4.
ICPRICPR-2008-ZhaoGLJ #learning #modelling
Spatio-temporal patches for night background modeling by subspace learning (YZ, HG, LL, YJ), pp. 1–4.
KDDKDD-2008-ChenJCLWY #classification #kernel #learning
Learning subspace kernels for classification (JC, SJ, BC, QL, MW, JY), pp. 106–114.
KDDKDD-2008-HuangDLL #clustering #equivalence #higher-order
Simultaneous tensor subspace selection and clustering: the equivalence of high order svd and k-means clustering (HH, CHQD, DL, TL), pp. 327–335.
KDDKDD-2008-JiTYY #classification #multi
Extracting shared subspace for multi-label classification (SJ, LT, SY, JY), pp. 381–389.
KDDKDD-2008-MoiseS #approach #clustering #novel #statistics
Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering (GM, JS), pp. 533–541.
KDDKDD-2008-MullerAKJS #clustering #interactive #named
Morpheus: interactive exploration of subspace clustering (EM, IA, RK, TJ, TS), pp. 1089–1092.
ICDARICDAR-2007-HirayamaNK #classification #difference #using
A Classifier of Similar Characters using Compound Mahalanobis Function based on Difference Subspace (JH, HN, NK), pp. 432–436.
ICDARICDAR-2007-LongJ #classification
Building Compact MQDF Classifier for Off-line Handwritten Chinese Characters by Subspace Distribution Sharing (TL, LJ), pp. 909–913.
VLDBVLDB-2007-LiH #approximate #mining #multi
Mining Approximate Top-K Subspace Anomalies in Multi-Dimensional Time-Series Data (XL, JH), pp. 447–458.
STOCSTOC-2007-DeshpandeV #approximate #reduction
Sampling-based dimension reduction for subspace approximation (AD, KRV), pp. 641–650.
CIKMCIKM-2007-ParkL #clustering #data type
Grid-based subspace clustering over data streams (NHP, WSL), pp. 801–810.
ICMLICML-2007-Warmuth
Winnowing subspaces (MKW), pp. 999–1006.
ICMLICML-2007-YoganandaMG #linear #performance
A fast linear separability test by projection of positive points on subspaces (APY, MNM, LG), pp. 713–720.
KDDKDD-2007-YanTS #classification #multi
Model-shared subspace boosting for multi-label classification (RY, JT, JRS), pp. 834–843.
MLDMMLDM-2007-SilvaGF #identification
One Lead ECG Based Personal Identification with Feature Subspace Ensembles (HS, HG, ALNF), pp. 770–783.
PPDPPPDP-2007-AntoyB
Computing with subspaces (SA, BB), pp. 121–130.
CIKMCIKM-2006-ChuHCC #clustering #on the
On subspace clustering with density consciousness (YHC, JWH, KTC, MSC), pp. 804–805.
CIKMCIKM-2006-DellisVVST
Constrained subspace skyline computation (ED, AV, IV, BS, YT), pp. 415–424.
ICMLICML-2006-DingZHZ #analysis #component #invariant #named #robust
R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization (CHQD, DZ, XH, HZ), pp. 281–288.
ICMLICML-2006-LuV #clustering
Combined central and subspace clustering for computer vision applications (LL, RV), pp. 593–600.
ICPRICPR-v1-2006-FuTC #orthogonal #using
Specular Free Spectral Imaging Using Orthogonal Subspace Projection (ZF, RTT, TC), pp. 812–815.
ICPRICPR-v1-2006-GaoW #random #recognition
Boosting in Random Subspaces for Face Recognition (YG, YW), pp. 519–522.
ICPRICPR-v2-2006-FangQ #classification
Car/Non-Car Classification in an Informative Sample Subspace (JF, GQ), pp. 962–965.
ICPRICPR-v2-2006-GrimHSP #approach #modelling #using
A Subspace Approach to Texture Modelling by Using Gaussian Mixtures (JG, MH, PS, PP), pp. 235–238.
ICPRICPR-v2-2006-SanguansatAJM #2d #analysis #component #recognition
Class-Specific Subspace-Based Two-Dimensional Principal Component Analysis for Face Recognition (PS, WA, SJ, SM), pp. 1246–1249.
ICPRICPR-v2-2006-YuW06b #mining #nondeterminism
Mining Uncertain Data in Low-dimensional Subspace (ZY, HSW), pp. 748–751.
ICPRICPR-v3-2006-WuT06a #image #re-engineering
A Regression Model in TensorPCA Subspace for Face Image Super-resolution Reconstruction (JW, MMT), pp. 627–630.
ICPRICPR-v4-2006-ChenJY06a #detection #distributed #fault
Fault Detection in Distributed Systems by Representative Subspace Mapping (HC, GJ, KY), pp. 912–915.
ICPRICPR-v4-2006-KoSB #random
A New Objective Function for Ensemble Selection in Random Subspaces (AHRK, RS, AdSBJ), pp. 185–188.
KDDKDD-2006-GaoGEJ #clustering
Discovering significant OPSM subspace clusters in massive gene expression data (BJG, OLG, ME, SJMJ), pp. 922–928.
VLDBVLDB-2005-PeiJET #approach #semantics
Catching the Best Views of Skyline: A Semantic Approach Based on Decisive Subspaces (JP, WJ, ME, YT), pp. 253–264.
ICMLICML-2005-PoczosL #analysis #independence #using
Independent subspace analysis using geodesic spanning trees (BP, AL), pp. 673–680.
KDDKDD-2005-ZakiPAS #algorithm #category theory #clustering #dataset #effectiveness #mining #named
CLICKS: an effective algorithm for mining subspace clusters in categorical datasets (MJZ, MP, IA, TS), pp. 736–742.
MLDMMLDM-2005-CandillierTTB #clustering #named #statistics
SSC: Statistical Subspace Clustering (LC, IT, FT, OB), pp. 100–109.
MLDMMLDM-2005-SzepannekLW #classification #comprehension
Understanding Patterns with Different Subspace Classification (GS, KL, CW), pp. 110–119.
DATEDATE-v1-2004-VandersteenPLD #identification #linear
Extended Subspace Identification of Improper Linear Systems (GV, RP, DL, SD), pp. 454–459.
VLDBVLDB-2004-ZhangLLW #detection #named
HOS-Miner: A System for Detecting Outlying Subspaces of High-dimensional Data (JZ, ML, TWL, HHW), pp. 1265–1268.
ICMLICML-2004-LeeWZB #perspective #probability
Probabilistic tangent subspace: a unified view (JL, JW, CZ, ZB).
ICPRICPR-v1-2004-TremblaySM #algorithm #multi #nearest neighbour #optimisation #random #search-based #using
Optimizing Nearest Neighbour in Random Subspaces using a Multi-Objective Genetic Algorithm (GT, RS, PM), p. 208.
ICPRICPR-v2-2004-CorsoDH #energy #image #segmentation
Image Segmentation Through Energy Minimization Based Subspace Fusion (JJC, MD, GDH), pp. 120–123.
ICPRICPR-v2-2004-FangQ #detection #learning
Learning Sample Subspace with Application to Face Detection (JF, GQ), pp. 423–426.
ICPRICPR-v3-2004-ChenYC #distance #multi #recognition
Inter-Subspace Distance: A New Method for Face Recognition with Multiple Samples (JHC, SLY, CSC), pp. 140–143.
ICPRICPR-v3-2004-ZhangM #recognition #using
Recognition of Expression Variant Faces Using Weighted Subspaces (YZ, AMM), pp. 149–152.
ICPRICPR-v4-2004-Amano #image
Image Interpolation by High Dimensional Projection based on Subspace Method (TA), pp. 665–668.
ICPRICPR-v4-2004-LiuSCH #clustering #personalisation #using #verification
Personalized Face Verification System Using Owner-Specific Cluster-Dependent LDA-Subspace (HCL, CHS, YHC, YPH), pp. 344–347.
ICPRICPR-v4-2004-NakamuraFTMYMTI #image #recognition #using
Eigen Nodule: View-Based Recognition of Lung Nodule in Chest X-ray CT Images Using Subspace Method (YN, GF, HT, SM, SY, TM, YT, TI), pp. 681–684.
KDDKDD-2004-LiuWY #clustering #framework
A framework for ontology-driven subspace clustering (JL, WW, JY), pp. 623–628.
SIGIRSIGIR-2004-LiMO #adaptation #clustering #documentation
Document clustering via adaptive subspace iteration (TL, SM, MO), pp. 218–225.
SIGMODSIGMOD-2002-Aggarwal #estimation #framework #nearest neighbour #reduction
Hierarchical subspace sampling: a unified framework for high dimensional data reduction, selectivity estimation and nearest neighbor search (CCA), pp. 452–463.
ICPRICPR-v1-2002-AiYX #approach #detection
A Subspace Approach to Face Detection with Support Vector Machines (HA, LY, GX), pp. 45–48.
ICPRICPR-v2-2002-Ho #analysis #proximity
Exploratory Analysis of Point Proximity in Subspaces (TKH), pp. 196–199.
ICPRICPR-v2-2002-ZengCN #image #representation
Image Feature Representation by the Subspace of Nonlinear PCA (XYZ, YWC, ZN), pp. 228–231.
DACDAC-2001-ChenC #analysis #grid #performance #power management #scalability
Efficient Large-Scale Power Grid Analysis Based on Preconditioned Krylov-Subspace Iterative Methods (THC, CCPC), pp. 559–562.
ICEISICEIS-v1-2001-Rao #algorithm #clustering #multi
An Algorithm for Determining Subspaces Containing Clusters with Multiple Minimum Density Thresholds for Numerical Data (PRR), pp. 530–532.
DACDAC-2000-WangN #analysis #linear #multi #order
Extended Krylov subspace method for reduced order analysis of linear circuits with multiple sources (JMW, TVN), pp. 247–252.
CIKMCIKM-2000-SakuraiYUK
The Subspace Coding Method: A New Indexing Scheme for High-Dimensional Data (YS, MY, SU, HK), pp. 210–218.
ICPRICPR-v1-2000-RidderKLD #adaptation #segmentation
The Adaptive Subspace Map for Texture Segmentation (DdR, JK, OL, RPWD), pp. 1216–1220.
ICPRICPR-v2-2000-TaxD
Data Description in Subspaces (DMJT, RPWD), pp. 2672–2675.
ICPRICPR-v3-2000-Ichimura #feature model #segmentation #using
Motion Segmentation Using Feature Selection and Subspace Method Based on Shape Space (NI), pp. 3858–3864.
DACDAC-1999-Freund #algorithm #modelling #simulation
Passive Reduced-Order Models for Interconnect Simulation and Their Computation via Krylov-Subspace Algorithms (RWF), pp. 195–200.
KDDKDD-1999-ChengFZ #clustering #mining
Entropy-based Subspace Clustering for Mining Numerical Data (CHC, AWCF, YZ), pp. 84–93.
SIGMODSIGMOD-1998-AgrawalGGR #automation #clustering #data mining #mining
Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications (RA, JG, DG, PR), pp. 94–105.
ICPRICPR-1998-ArikiS #classification #multi #using
Classification of TV sports news by DCT features using multiple subspace method (YA, YS), pp. 1488–1491.
ICPRICPR-1998-BischofLP #classification #robust
A robust subspace classifier (HB, AL, FP), pp. 114–116.
ICPRICPR-1998-NicollsJ #estimation
Maximum likelihood estimation of Toeplitz-block-Toeplitz covariances in the presence of subspace interference (FN, GdJ), pp. 1595–1597.
ICPRICPR-1996-ArikiI #integration #recognition
Integration of face and speaker recognition by subspace method (YA, NI), pp. 456–460.
DACDAC-1995-TelicheveskyKW #analysis #performance
Efficient Steady-State Analysis Based on Matrix-Free Krylov-Subspace Methods (RT, KSK, JW), pp. 480–484.
ICDARICDAR-v1-1995-ArikiM #recognition #segmentation #using
Segmentation and recognition of handwritten characters using subspace method (YA, YM), pp. 120–123.
ICDARICDAR-1993-OhkuraSSH #on the #using
On discrimination of handwritten similar KANJI characters by subspace method using several features (MO, YS, MS, RH), pp. 589–592.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.