Yike Guo, Faisal Farooq
Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining
KDD, 2018.
@proceedings{KDD-2018,
doi = "10.1145/3219819",
editor = "Yike Guo and Faisal Farooq",
publisher = "{ACM}",
title = "{Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining}",
year = 2018,
}
Contents (310 items)
- KDD-2018-Hand
- Data Science for Financial Applications (DJH), p. 1.
- KDD-2018-Roth #design
- Market Design and Computerized Marketplaces (AER), p. 2.
- KDD-2018-Teh #big data #learning #on the #problem
- On Big Data Learning for Small Data Problems (YWT), p. 3.
- KDD-2018-Wing
- Data for Good: Abstract (JMW), p. 4.
- KDD-2018-AbernethyCFSW #named #pipes and filters
- ActiveRemediation: The Search for Lead Pipes in Flint, Michigan (JDA, AC, AF, EMS, JW), pp. 5–14.
- KDD-2018-AckermannWUNRLB #framework #machine learning #modelling #policy
- Deploying Machine Learning Models for Public Policy: A Framework (KA, JW, ADU, HN, ANR, SJL, JB, MD, CC, LH, RG), pp. 15–22.
- KDD-2018-AgarwalBGXYZ #online #parametricity #problem #ranking
- Online Parameter Selection for Web-based Ranking Problems (DA, KB0, SG, YX, YY, LZ), pp. 23–32.
- KDD-2018-AyhanCS #predict
- Predicting Estimated Time of Arrival for Commercial Flights (SA, PC, HS), pp. 33–42.
- KDD-2018-BaiZEV #learning #representation
- Interpretable Representation Learning for Healthcare via Capturing Disease Progression through Time (TB, SZ, BLE, SV), pp. 43–51.
- KDD-2018-BaiOZFRST #n-gram #query #scalability
- Scalable Query N-Gram Embedding for Improving Matching and Relevance in Sponsored Search (XB0, EO, YZ, AF, AR, RS, AT), pp. 52–61.
- KDD-2018-BhagatMLV #modelling #recommendation
- Buy It Again: Modeling Repeat Purchase Recommendations (RB, SM, AL, SV), pp. 62–70.
- KDD-2018-BorisyukGS #detection #image #named #recognition #scalability
- Rosetta: Large Scale System for Text Detection and Recognition in Images (FB, AG, VS), pp. 71–79.
- KDD-2018-CardosoDV #learning #personalisation #recommendation #semistructured data #towards
- Product Characterisation towards Personalisation: Learning Attributes from Unstructured Data to Recommend Fashion Products (ÂC, FD, SV), pp. 80–89.
- KDD-2018-ChenCL #dataset #open data
- Rotation-blended CNNs on a New Open Dataset for Tropical Cyclone Image-to-intensity Regression (BC, BFC, HTL), pp. 90–99.
- KDD-2018-ChenLZLZL #collaboration #distributed
- Distributed Collaborative Hashing and Its Applications in Ant Financial (CC, ZL, PZ, LL, JZ, XL), pp. 100–109.
- KDD-2018-ChenHNLLWX #multi #named
- MIX: Multi-Channel Information Crossing for Text Matching (HC, FXH, DN, DL, KL, CW, YX), pp. 110–119.
- KDD-2018-ChenLZK #graph #how
- How LinkedIn Economic Graph Bonds Information and Product: Applications in LinkedIn Salary (XC, YL, LZ, KK), pp. 120–129.
- KDD-2018-ChenCYY #optimisation #scalability
- Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data (XC, PC0, LY, SY), pp. 130–138.
- KDD-2018-Christakopoulou #approach #interactive #recommendation #towards
- Q&R: A Two-Stage Approach toward Interactive Recommendation (KC, AB, RL, SJ, EHC), pp. 139–148.
- KDD-2018-ChungCHLE #behaviour #detection #visual notation
- Detection of Apathy in Alzheimer Patients by Analysing Visual Scanning Behaviour with RNNs (JC, SAC, NH, KLL, ME), pp. 149–157.
- KDD-2018-ComarelaDBCC #web
- Assessing Candidate Preference through Web Browsing History (GC, RD, PB, DDC, MC), pp. 158–167.
- KDD-2018-ConoverHBSS #named #performance
- Pangloss: Fast Entity Linking in Noisy Text Environments (MDC, MH, SB, PS, SS), pp. 168–176.
- KDD-2018-DabrowskiRGAM #modelling #quality
- State Space Models for Forecasting Water Quality Variables: An Application in Aquaculture Prawn Farming (JJD, AR, AG, SA, JM), pp. 177–185.
- KDD-2018-DaltayanniDA #automation #segmentation #using
- Automated Audience Segmentation Using Reputation Signals (MD, AD, LdA), pp. 186–195.
- KDD-2018-DasSCHLCKC #learning #named #performance #using
- SHIELD: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression (ND, MS, STC, FH, SL, LC, MEK, DHC), pp. 196–204.
- KDD-2018-DavoudiAZE #adaptation
- Adaptive Paywall Mechanism for Digital News Media (HD, AA, MZ, GE), pp. 205–214.
- KDD-2018-RouxPMVF #approach #detection #machine learning #using
- Tax Fraud Detection for Under-Reporting Declarations Using an Unsupervised Machine Learning Approach (DdR, BP, AM, MDPV, CF), pp. 215–222.
- KDD-2018-DecroosHD #automation
- Automatic Discovery of Tactics in Spatio-Temporal Soccer Match Data (TD, JVH, JD), pp. 223–232.
- KDD-2018-DengKL #metric #novel
- Applying the Delta Method in Metric Analytics: A Practical Guide with Novel Ideas (AD, UK, JL), pp. 233–242.
- KDD-2018-DietheHKPSSTTF #lessons learnt
- Releasing eHealth Analytics into the Wild: Lessons Learnt from the SPHERE Project (TD, MH, MK, MPN, KS, HS, ET, NT, PAF), pp. 243–252.
- KDD-2018-FanHZYA #detection #exclamation
- Gotcha - Sly Malware!: Scorpion A Metagraph2vec Based Malware Detection System (YF, SH, YZ, YY, MA), pp. 253–262.
- KDD-2018-FirmaniMMN #information management #towards
- Towards Knowledge Discovery from the Vatican Secret Archives. In Codice Ratio - Episode 1: Machine Transcription of the Manuscripts (DF, MM, PM, EN), pp. 263–272.
- KDD-2018-FunkhouserMAPB
- Device Graphing by Example (KF, MM, ECA, PP, PB), pp. 273–282.
- KDD-2018-GaoGYSTXWYRMC #optimisation #realtime
- Near Real-time Optimization of Activity-based Notifications (YG, VG, JY, CS, ZT, PJX, CW, SY, RR, AM, SC), pp. 283–292.
- KDD-2018-GittensRWMGPKRM #data analysis #library #scalability #using
- Accelerating Large-Scale Data Analysis by Offloading to High-Performance Computing Libraries using Alchemist (AG, KR, SW, MWM, LG, P, JK, MFR, KJM), pp. 293–301.
- KDD-2018-GohSVH #learning #predict #rule-based #using
- Using Rule-Based Labels for Weak Supervised Learning: A ChemNet for Transferable Chemical Property Prediction (GBG, CS, AV, NOH), pp. 302–310.
- KDD-2018-GrbovicC #personalisation #ranking #realtime #using
- Real-time Personalization using Embeddings for Search Ranking at Airbnb (MG, HC), pp. 311–320.
- KDD-2018-HangPN #behaviour #predict #student
- Exploring Student Check-In Behavior for Improved Point-of-Interest Prediction (MH, IP, JN), pp. 321–330.
- KDD-2018-HarelR #network #prototype #using
- Accelerating Prototype-Based Drug Discovery using Conditional Diversity Networks (SH, KR), pp. 331–339.
- KDD-2018-He0LRLTZ #detection #using
- Detecting Vehicle Illegal Parking Events using Sharing Bikes' Trajectories (TH, JB0, RL, SR, YL, CT, YZ0), pp. 340–349.
- KDD-2018-HuF #analysis #multimodal #sentiment
- Multimodal Sentiment Analysis To Explore the Structure of Emotions (AH, SRF), pp. 350–358.
- KDD-2018-HuWYKHCHWMS #visual notation
- Web-Scale Responsive Visual Search at Bing (HH, YW, LY, PK, LH, X(C, JH, YW, MM, AS), pp. 359–367.
- KDD-2018-HuDZ0X #analysis #e-commerce #formal method #learning #rank
- Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization, Analysis, and Application (YH, QD, AZ, YY0, YX), pp. 368–377.
- KDD-2018-HulotAJ #effectiveness #predict #towards
- Towards Station-Level Demand Prediction for Effective Rebalancing in Bike-Sharing Systems (PH, DA, SDJ), pp. 378–386.
- KDD-2018-HundmanCLCS #detection #parametricity #using
- Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding (KH, VC, CL, IC, TS), pp. 387–395.
- KDD-2018-IyengarLISW #approach #data-driven #energy #named #performance
- WattHome: A Data-driven Approach for Energy Efficiency Analytics at City-scale (SI, SL, DEI, PJS, BW), pp. 396–405.
- KDD-2018-Janakiraman #learning #multi #safety #using
- Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning (VMJ), pp. 406–415.
- KDD-2018-JauvionG #realtime
- Optimal Allocation of Real-Time-Bidding and Direct Campaigns (GJ, NG), pp. 416–424.
- KDD-2018-JauvionGSGG #optimisation #using
- Optimization of a SSP's Header Bidding Strategy using Thompson Sampling (GJ, NG, PDS, AG, SG), pp. 425–432.
- KDD-2018-KhuranaASV #using
- Resolving Abstract Anaphora Implicitly in Conversational Assistants using a Hierarchically stacked RNN (PK, PA, GMS, LV), pp. 433–442.
- KDD-2018-KochGGWGX #framework #named #optimisation
- Autotune: A Derivative-free Optimization Framework for Hyperparameter Tuning (PK, OG, SG, BW, JG, YX), pp. 443–452.
- KDD-2018-Kokkodis #online #recommendation
- Dynamic Recommendations for Sequential Hiring Decisions in Online Labor Markets (MK), pp. 453–461.
- KDD-2018-KoptelovZBBC #identification #named
- PrePeP: A Tool for the Identification and Characterization of Pan Assay Interference Compounds (MK, AZ, PB, RB, BC), pp. 462–471.
- KDD-2018-KumarRBVWKEFMZG #machine learning #using
- Using Machine Learning to Assess the Risk of and Prevent Water Main Breaks (AK, SAAR, BB, RAV, KHW, CK, SE, AF, AM, JZ, RG), pp. 472–480.
- KDD-2018-LeeAVN #collaboration #comprehension #learning #metric #video
- Collaborative Deep Metric Learning for Video Understanding (JL, SAEH, BV, AN), pp. 481–490.
- KDD-2018-LeeS #bias #estimation #online
- Winner's Curse: Bias Estimation for Total Effects of Features in Online Controlled Experiments (MRL, MS), pp. 491–499.
- KDD-2018-LeeGZ #generative #network #query
- Rare Query Expansion Through Generative Adversarial Networks in Search Advertising (MCL, BG, RZ), pp. 500–508.
- KDD-2018-LiRMLKC #named #predict
- TATC: Predicting Alzheimer's Disease with Actigraphy Data (JL, YR, HM, ZL0, TK, HC), pp. 509–518.
- KDD-2018-LiHZ #graph #predict
- E-tail Product Return Prediction via Hypergraph-based Local Graph Cut (JL, JH, YZ), pp. 519–527.
- KDD-2018-LiYCYZ #3d #algorithm #constraints #data-driven #delivery #problem
- A Data-Driven Three-Layer Algorithm for Split Delivery Vehicle Routing Problem with 3D Container Loading Constraint (XL, MY, DC, JY, JZ), pp. 528–536.
- KDD-2018-LiaoZWMCYGW #learning #predict #sequence
- Deep Sequence Learning with Auxiliary Information for Traffic Prediction (BL, JZ, CW0, DM, TC, SY, YG, FW), pp. 537–546.
- KDD-2018-LinKLZSXZQZ #big data #identification #interactive #multi #named
- BigIN4: Instant, Interactive Insight Identification for Multi-Dimensional Big Data (QL, WK, JGL, HZ0, KS, YX, ZZ, BQ, DZ), pp. 547–555.
- KDD-2018-LiuCMCMJJ #lessons learnt #normalisation #online #scalability
- Lessons Learned from Developing and Deploying a Large-Scale Employer Name Normalization System for Online Recruitment (QL, JC, TM, AC, CM, FJ, VJ), pp. 556–565.
- KDD-2018-LiuSZ #detection
- Where Will Dockless Shared Bikes be Stacked?: - Parking Hotspots Detection in a New City (ZL, YS, YZ), pp. 566–575.
- KDD-2018-MiloS #data analysis #interactive #platform
- Next-Step Suggestions for Modern Interactive Data Analysis Platforms (TM, AS), pp. 576–585.
- KDD-2018-MolinoZW #named #network #ranking
- COTA: Improving the Speed and Accuracy of Customer Support through Ranking and Deep Networks (PM, HZ, YCW), pp. 586–595.
- KDD-2018-NiOLLOZS #e-commerce #learning #multi
- Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks (YN, DO, SL, XL, WO, AZ, LS), pp. 596–605.
- KDD-2018-BeeckMSVD #machine learning #predict
- Fatigue Prediction in Outdoor Runners Via Machine Learning and Sensor Fusion (TODB, WM, KS0, BV, JD), pp. 606–615.
- KDD-2018-OshriHACDWBLE #assessment #framework #learning #quality #using
- Infrastructure Quality Assessment in Africa using Satellite Imagery and Deep Learning (BO, AH, PA, XC, PD, JW, MB, DBL, SE), pp. 616–625.
- KDD-2018-PetroniRNNPSL
- An Extensible Event Extraction System With Cross-Media Event Resolution (FP, NR, TN, AN, ZP, SS, JLL), pp. 626–635.
- KDD-2018-RaoTL #comprehension #framework #learning #multi #network #platform #query
- Multi-Task Learning with Neural Networks for Voice Query Understanding on an Entertainment Platform (JR, FT, JL), pp. 636–645.
- KDD-2018-RongXYM #big data #named #realtime
- Du-Parking: Spatio-Temporal Big Data Tells You Realtime Parking Availability (YR, ZX, RY, XM), pp. 646–654.
- KDD-2018-Ruhrlander0U #modelling #predict #using
- Improving Box Office Result Predictions for Movies Using Consumer-Centric Models (RPR, MB0, MU), pp. 655–664.
- KDD-2018-SadrediniGBRSW #hardware #novel #rule-based #scalability
- A Scalable Solution for Rule-Based Part-of-Speech Tagging on Novel Hardware Accelerators (ES, DG, CB, RR, KS, HW), pp. 665–674.
- KDD-2018-SafaviDK #case study
- Career Transitions and Trajectories: A Case Study in Computing (TS, MD, DK), pp. 675–684.
- KDD-2018-SamelM #learning
- Active Deep Learning to Tune Down the Noise in Labels (KS, XM), pp. 685–694.
- KDD-2018-SatoNHMHAM #detection #learning
- Managing Computer-Assisted Detection System Based on Transfer Learning with Negative Transfer Inhibition (IS, YN, SH, SM, NH, OA, YM), pp. 695–704.
- KDD-2018-Schlosser0 #approach #contest #data-driven #online
- Dynamic Pricing under Competition on Online Marketplaces: A Data-Driven Approach (RS, MB0), pp. 705–714.
- KDD-2018-ShashikumarSCN #bidirectional #detection #network #using
- Detection of Paroxysmal Atrial Fibrillation using Attention-based Bidirectional Recurrent Neural Networks (SPS, AJS, GDC, SN), pp. 715–723.
- KDD-2018-ShenLOLZC #framework #named #network #novel #predict
- StepDeep: A Novel Spatial-temporal Mobility Event Prediction Framework based on Deep Neural Network (BS, XL, YO, ML, WZ, KMC), pp. 724–733.
- KDD-2018-ShengTWXZN #email #information management #privacy #scalability
- Anatomy of a Privacy-Safe Large-Scale Information Extraction System Over Email (YS0, ST, JBW, JX0, QZ, MN), pp. 734–743.
- KDD-2018-ShiPHMWMMLDC #performance
- Audience Size Forecasting: Fast and Smart Budget Planning for Media Buyers (YS, CP, RH, WM, MHW, JM, PM, PL, RDW, RC), pp. 744–753.
- KDD-2018-SilvisSL #named #student
- PittGrub: A Frustration-Free System to Reduce Food Waste by Notifying Hungry College Students (MS, AS, AL), pp. 754–763.
- KDD-2018-WaliaHCCLKNBAM #pipes and filters #predict #risk management
- A Dynamic Pipeline for Spatio-Temporal Fire Risk Prediction (BSW, QH, JC, FC, JL, NK, PN, JB, GA, MM), pp. 764–773.
- KDD-2018-StaarDAB #corpus #documentation #framework #machine learning #platform #scalability
- Corpus Conversion Service: A Machine Learning Platform to Ingest Documents at Scale (PWJS, MD, CA, CB), pp. 774–782.
- KDD-2018-SugiuraKYMAY #visual notation #visualisation
- Estimating Glaucomatous Visual Sensitivity from Retinal Thickness with Pattern-Based Regularization and Visualization (HS, TK, SY, HM, RA, KY), pp. 783–792.
- KDD-2018-SunTYWZ #identification #modelling #predict
- Identify Susceptible Locations in Medical Records via Adversarial Attacks on Deep Predictive Models (MS, FT, JY, FW, JZ), pp. 793–801.
- KDD-2018-SureshGG #learning #multi
- Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU (HS, JJG, JVG), pp. 802–810.
- KDD-2018-TaoXGLFZ #detection #framework #game studies #named
- NGUARD: A Game Bot Detection Framework for NetEase MMORPGs (JT, JX, LG, YL, CF, ZZ), pp. 811–820.
- KDD-2018-Valdez-VivasGKF #detection #distributed #framework #performance #realtime
- A Real-time Framework for Detecting Efficiency Regressions in a Globally Distributed Codebase (MVV, CG, AK, EF, KG, SC), pp. 821–829.
- KDD-2018-WangWW #network
- Inferring Metapopulation Propagation Network for Intra-city Epidemic Control and Prevention (JW, XW, JW), pp. 830–838.
- KDD-2018-WangHZZZL #e-commerce #recommendation
- Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba (JW, PH, HZ, ZZ, BZ, DLL), pp. 839–848.
- KDD-2018-WangMJYXJSG #detection #multi #named #network
- EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection (YW, FM, ZJ, YY0, GX, KJ, LS, JG0), pp. 849–857.
- KDD-2018-WangFY #learning
- Learning to Estimate the Travel Time (ZW, KF, JY), pp. 858–866.
- KDD-2018-WongPKFJ #biology #community #named #network #performance
- SDREGION: Fast Spotting of Changing Communities in Biological Networks (SWHW, CP, MK, CF, IJ), pp. 867–875.
- KDD-2018-XieCS #detection #online
- False Discovery Rate Controlled Heterogeneous Treatment Effect Detection for Online Controlled Experiments (YX, NC, XS), pp. 876–885.
- KDD-2018-ShenYXEBW0 #graph #mobile #scalability
- Mobile Access Record Resolution on Large-Scale Identifier-Linkage Graphs (XS, HY, WX, ME, JB, ZW, CW0), pp. 886–894.
- KDD-2018-XuDH #named #online #quality
- SQR: Balancing Speed, Quality and Risk in Online Experiments (YX, WD, SH), pp. 895–904.
- KDD-2018-XuLGZLNLBY #approach #learning #on-demand #order #platform #scalability
- Large-Scale Order Dispatch in On-Demand Ride-Hailing Platforms: A Learning and Planning Approach (ZX, ZL, QG, DZ, QL, JN, CL, WB, JY), pp. 905–913.
- KDD-2018-YangSJ0 #clustering #ll #mobile #predict #social
- I Know You'll Be Back: Interpretable New User Clustering and Churn Prediction on a Mobile Social Application (CY, XS, LJ, JH0), pp. 914–922.
- KDD-2018-YangZTWCH #case study #contest #image #learning #recognition
- Deep Learning for Practical Image Recognition: Case Study on Kaggle Competitions (XY, ZZ, SGT, LW, VC0, SCHH), pp. 923–931.
- KDD-2018-YeQCWZMYZ
- Customized Regression Model for Airbnb Dynamic Pricing (PY, JQ, JC, CHW, YZ, SDM, FY, LZ), pp. 932–940.
- KDD-2018-YeZZGZ #evaluation #named #parallel #performance
- RapidScorer: Fast Tree Ensemble Evaluation by Maximizing Compactness in Data Level Parallelization (TY, HZ, WYZ, BG, RZ), pp. 941–950.
- KDD-2018-YiZWLZ #distributed #network #predict #quality
- Deep Distributed Fusion Network for Air Quality Prediction (XY, JZ, ZW, TL, YZ0), pp. 965–973.
- KDD-2018-YingHCEHL #graph #network #recommendation
- Graph Convolutional Neural Networks for Web-Scale Recommender Systems (RY, RH, KC, PE, WLH, JL), pp. 974–983.
- KDD-2018-YuanZY #approach #learning #named #predict
- Hetero-ConvLSTM: A Deep Learning Approach to Traffic Accident Prediction on Heterogeneous Spatio-Temporal Data (ZY, XZ, TY), pp. 984–992.
- KDD-2018-ZhangPZZZRJ #visual notation
- Visual Search at Alibaba (YZ, PP, YZ, KZ, YZ, XR, RJ), pp. 993–1001.
- KDD-2018-ZhangZY0 #ambiguity #clustering #maintenance
- Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop (YZ, FZ, PY, JT0), pp. 1002–1011.
- KDD-2018-ZhaoNOE #optimisation
- Notification Volume Control and Optimization System at Pinterest (BZ, KN, BO, JE), pp. 1012–1020.
- KDD-2018-0009QG0H #learning #realtime
- Deep Reinforcement Learning for Sponsored Search Real-time Bidding (JZ0, GQ, ZG, WZ0, XH), pp. 1021–1030.
- KDD-2018-ZhaoLSY #e-commerce #learning #representation
- Learning and Transferring IDs Representation in E-commerce (KZ, YL, ZS, CY), pp. 1031–1039.
- KDD-2018-ZhaoZDXTY #feedback #learning #recommendation
- Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (XZ, LZ, ZD, LX, JT, DY), pp. 1040–1048.
- KDD-2018-ZhengMD0 #named
- OpenTag: Open Attribute Value Extraction from Product Profiles (GZ, SM, XLD, FL0), pp. 1049–1058.
- KDD-2018-ZhouZSFZMYJLG #network #predict
- Deep Interest Network for Click-Through Rate Prediction (GZ, XZ, CS, YF, HZ, XM, YY, JJ, HL, KG), pp. 1059–1068.
- KDD-2018-ZhouNMZ #interactive
- Discovering Latent Patterns of Urban Cultural Interactions in WeChat for Modern City Planning (XZ, AN, CM, ZZ), pp. 1069–1078.
- KDD-2018-ZhuLZLHLG #learning #recommendation
- Learning Tree-based Deep Model for Recommender Systems (HZ, XL, PZ, GL, JH, HL, KG), pp. 1079–1088.
- KDD-2018-AbebeKPT #persuasion
- Opinion Dynamics with Varying Susceptibility to Persuasion (RA, JMK, DCP, CET), pp. 1089–1098.
- KDD-2018-AcharyaGZ #markov #topic
- A Dual Markov Chain Topic Model for Dynamic Environments (AA, JG, MZ), pp. 1099–1108.
- KDD-2018-Anagnostopoulos #algorithm #online #outsourcing
- Algorithms for Hiring and Outsourcing in the Online Labor Market (AA, CC0, AF, SL, ET), pp. 1109–1118.
- KDD-2018-BachemL0 #clustering #lightweight #scalability
- Scalable k -Means Clustering via Lightweight Coresets (OB, ML, AK0), pp. 1119–1127.
- KDD-2018-BaiQD #behaviour #modelling
- Discovering Models from Structural and Behavioral Brain Imaging Data (ZB, BQ, ID), pp. 1128–1137.
- KDD-2018-BateniEM #distributed #optimisation #sketching
- Optimal Distributed Submodular Optimization via Sketching (MB, HE, VSM), pp. 1138–1147.
- KDD-2018-Benson0T #sequence #set
- Sequences of Sets (ARB, RK0, AT), pp. 1148–1157.
- KDD-2018-CaiWGSJ #learning #multi
- Deep Adversarial Learning for Multi-Modality Missing Data Completion (LC, ZW, HG, DS, SJ), pp. 1158–1166.
- KDD-2018-0022PYT #algorithm #effectiveness #network #optimisation
- Network Connectivity Optimization: Fundamental Limits and Effective Algorithms (CC0, RP, LY, HT), pp. 1167–1176.
- KDD-2018-ChenYWWNL #metric #named #network #predict
- PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction (HC, HY, WW0, HW0, QVHN, XL), pp. 1177–1186.
- KDD-2018-Chen0DTHT #learning #online #recommendation
- Stabilizing Reinforcement Learning in Dynamic Environment with Application to Online Recommendation (SYC, YY0, QD, JT, HKH, HHT), pp. 1187–1196.
- KDD-2018-ChenLB #network #social
- Quantifying and Minimizing Risk of Conflict in Social Networks (XC, JL, TDB), pp. 1197–1205.
- KDD-2018-ChenHNHYH #clustering #normalisation #scalability
- Spectral Clustering of Large-scale Data by Directly Solving Normalized Cut (XC0, WH, FN, DH, MY0, JZH), pp. 1206–1215.
- KDD-2018-ChenCDLW0C #information management #named
- Learning-to-Ask: Knowledge Acquisition via 20 Questions (YC, BC, XD, JGL, YW, WZ0, YC), pp. 1216–1225.
- KDD-2018-ChenGCSSJ #3d #image #network
- Voxel Deconvolutional Networks for 3D Brain Image Labeling (YC, HG, LC, MS, DS, SJ), pp. 1226–1234.
- KDD-2018-Christakopoulou18a #modelling #recommendation
- Local Latent Space Models for Top-N Recommendation (EC, GK), pp. 1235–1243.
- KDD-2018-ChuHHWP #consistency #linear #network
- Exact and Consistent Interpretation for Piecewise Linear Neural Networks: A Closed Form Solution (LC, XH, JH, LW, JP), pp. 1244–1253.
- KDD-2018-CobbEMR #calculus #identification #multi #process
- Identifying Sources and Sinks in the Presence of Multiple Agents with Gaussian Process Vector Calculus (ADC, RE, AM, SJR), pp. 1254–1262.
- KDD-2018-Cohen-SteinerKS #approximate #graph
- Approximating the Spectrum of a Graph (DCS, WK, CS, GV), pp. 1263–1271.
- KDD-2018-ConteMSGMV #community #detection #named #network #scalability
- D2K: Scalable Community Detection in Massive Networks via Small-Diameter k-Plexes (AC, TDM, DDS, RG, AM, LV), pp. 1272–1281.
- KDD-2018-ConteFGMSU #network #similarity
- Node Similarity with q -Grams for Real-World Labeled Networks (AC, GF, RG, AM, KS, TU), pp. 1282–1291.
- KDD-2018-DahiyaKW #algebra #empirical #evaluation #linear #sketching
- An Empirical Evaluation of Sketching for Numerical Linear Algebra (YD, DK, DPW), pp. 1292–1300.
- KDD-2018-DiPSC #learning #morphism
- Transfer Learning via Feature Isomorphism Discovery (SD, JP, YS, LC), pp. 1301–1309.
- KDD-2018-DingLBZL #framework #named
- Investor-Imitator: A Framework for Trading Knowledge Extraction (YD, WL, JB0, DZ, TYL), pp. 1310–1319.
- KDD-2018-DonnatZHL #learning
- Learning Structural Node Embeddings via Diffusion Wavelets (CD, MZ, DH, JL), pp. 1320–1329.
- KDD-2018-DuTZTZ
- Demand-Aware Charger Planning for Electric Vehicle Sharing (BD, YT, ZZ, QT, WZ), pp. 1330–1338.
- KDD-2018-DuT #equation #graph #mining #named #performance
- FASTEN: Fast Sylvester Equation Solver for Graph Mining (BD, HT), pp. 1339–1347.
- KDD-2018-DuDXZW #multi
- Multi-view Adversarially Learned Inference for Cross-domain Joint Distribution Matching (CD, CD, XX, CZ, HW), pp. 1348–1357.
- KDD-2018-DuLSH #predict #towards
- Towards Explanation of DNN-based Prediction with Guided Feature Inversion (MD, NL, QS, XH), pp. 1358–1367.
- KDD-2018-Ertl #algorithm #set
- BagMinHash - Minwise Hashing Algorithm for Weighted Sets (OE), pp. 1368–1377.
- KDD-2018-EswaranFGM #detection #graph #named #streaming
- SpotLight: Detecting Anomalies in Streaming Graphs (DE, CF, SG, NM), pp. 1378–1386.
- KDD-2018-FoxAJPW #learning #multi #predict
- Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories (IF, LA, MJ, RPB, JW), pp. 1387–1395.
- KDD-2018-FuWHW #approximate #fault #learning #reduction #scalability
- Scalable Active Learning by Approximated Error Reduction (WF, MW, SH, XW0), pp. 1396–1405.
- KDD-2018-GaoH #network #self
- Self-Paced Network Embedding (HG, HH), pp. 1406–1415.
- KDD-2018-GaoWJ #graph #network #scalability
- Large-Scale Learnable Graph Convolutional Networks (HG, ZW, SJ), pp. 1416–1424.
- KDD-2018-GargR #exclamation #recommendation
- Route Recommendations for Idle Taxi Drivers: Find Me the Shortest Route to a Customer! (NG, SR), pp. 1425–1434.
- KDD-2018-DizajiWH #generative #network
- Semi-Supervised Generative Adversarial Network for Gene Expression Inference (KGD, XW, HH), pp. 1435–1444.
- KDD-2018-GiesekeI #random
- Training Big Random Forests with Little Resources (FG, CI), pp. 1445–1454.
- KDD-2018-GongW #analysis #behaviour #modelling #network #sentiment #social
- When Sentiment Analysis Meets Social Network: A Holistic User Behavior Modeling in Opinionated Data (LG, HW), pp. 1455–1464.
- KDD-2018-GorovitsGPB #community #learning #named
- LARC: Learning Activity-Regularized Overlapping Communities Across Time (AG, EG, EEP, PB), pp. 1465–1474.
- KDD-2018-GuYCH #algorithm #incremental #learning
- New Incremental Learning Algorithm for Semi-Supervised Support Vector Machine (BG, XTY, SC, HH), pp. 1475–1484.
- KDD-2018-GuiL #robust
- R 2 SDH: Robust Rotated Supervised Discrete Hashing (JG, PL0), pp. 1485–1493.
- KDD-2018-HanSSZ #collaboration #learning #multi #semistructured data
- Multi-label Learning with Highly Incomplete Data via Collaborative Embedding (YH, GS, YS, XZ0), pp. 1494–1503.
- KDD-2018-HauserEM #optimisation
- PCA by Determinant Optimisation has no Spurious Local Optima (RAH, AE, HFM), pp. 1504–1511.
- KDD-2018-HerlandsMWN #automation #design
- Automated Local Regression Discontinuity Design Discovery (WH, EMI, AGW, DBN), pp. 1512–1520.
- KDD-2018-HongCL #kernel #learning
- Disturbance Grassmann Kernels for Subspace-Based Learning (JH, HC, FL), pp. 1521–1530.
- KDD-2018-HuSZY #recommendation
- Leveraging Meta-path based Context for Top- N Recommendation with A Neural Co-Attention Model (BH, CS, WXZ, PSY), pp. 1531–1540.
- KDD-2018-HuaiMLSSZ #learning #metric #probability
- Metric Learning from Probabilistic Labels (MH, CM, YL, QS, LS, AZ), pp. 1541–1550.
- KDD-2018-Huang0LSG
- Generalized Score Functions for Causal Discovery (BH, KZ0, YL, BS, CG), pp. 1551–1560.
- KDD-2018-HuangMFFT #performance #symmetry
- Accurate and Fast Asymmetric Locality-Sensitive Hashing Scheme for Maximum Inner Product Search (QH, GM, JF, QF, AKHT), pp. 1561–1570.
- KDD-2018-HuangXXSNC #matrix
- Active Feature Acquisition with Supervised Matrix Completion (SJH, MX, MKX, MS, GN, SC), pp. 1571–1579.
- KDD-2018-HuangZL #adaptation #effectiveness
- Cost-Effective Training of Deep CNNs with Active Model Adaptation (SJH, JWZ, ZYL), pp. 1580–1588.
- KDD-2018-JeongJ #learning #multi
- Variable Selection and Task Grouping for Multi-Task Learning (JYJ, CHJ), pp. 1589–1598.
- KDD-2018-JhaXWGZ #concept #evolution #named
- Concepts-Bridges: Uncovering Conceptual Bridges Based on Biomedical Concept Evolution (KJ, GX, YW, VG, AZ), pp. 1599–1607.
- KDD-2018-0001YSLQT #predict
- A Treatment Engine by Predicting Next-Period Prescriptions (BJ0, HY, LS, CL, YQ, JT), pp. 1608–1616.
- KDD-2018-KuangCAXL #predict
- Stable Prediction across Unknown Environments (KK, PC0, SA, RX, BL0), pp. 1617–1626.
- KDD-2018-KumagaiI #bound #learning
- Learning Dynamics of Decision Boundaries without Additional Labeled Data (AK, TI), pp. 1627–1636.
- KDD-2018-Le0V #learning #memory management
- Dual Memory Neural Computer for Asynchronous Two-view Sequential Learning (HL, TT0, SV), pp. 1637–1645.
- KDD-2018-LeeLW #algorithm #distributed #empirical
- A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization (CpL, CHL, SJW), pp. 1646–1655.
- KDD-2018-LeeK #adaptation #privacy
- Concentrated Differentially Private Gradient Descent with Adaptive per-Iteration Privacy Budget (JL, DK), pp. 1656–1665.
- KDD-2018-LeeRK #classification #graph #using
- Graph Classification using Structural Attention (JBL, RAR, XK), pp. 1666–1674.
- KDD-2018-Li0ZQHG0 #information management #named #reliability
- TruePIE: Discovering Reliable Patterns in Pattern-Based Information Extraction (QL0, MJ0, XZ, MQ, TPH, JG0, JH0), pp. 1675–1684.
- KDD-2018-LiAKMVW #evaluation #modelling #policy #ranking
- Offline Evaluation of Ranking Policies with Click Models (SL, YAY, BK, SM, VV, ZW), pp. 1685–1694.
- KDD-2018-LiFWSYL #estimation #learning #multi #representation
- Multi-task Representation Learning for Travel Time Estimation (YL, KF, ZW, CS, JY, YL0), pp. 1695–1704.
- KDD-2018-LiMSGLDQ0 #performance #privacy
- An Efficient Two-Layer Mechanism for Privacy-Preserving Truth Discovery (YL, CM, LS, JG0, QL0, BD, ZQ, KR0), pp. 1705–1714.
- KDD-2018-LiY #classification #learning #network #policy
- Learning Adversarial Networks for Semi-Supervised Text Classification via Policy Gradient (YL, JY), pp. 1715–1723.
- KDD-2018-LiZY #approach #learning
- Dynamic Bike Reposition: A Spatio-Temporal Reinforcement Learning Approach (YL, YZ, QY), pp. 1724–1733.
- KDD-2018-LiZLHMC #behaviour #learning #recommendation
- Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors (ZL, HZ, QL0, ZH, TM, EC), pp. 1734–1743.
- KDD-2018-Lian0ZGCT0 #higher-order #network #proximity
- High-order Proximity Preserving Information Network Hashing (DL, KZ0, VWZ, YG, LC, IWT, XX0), pp. 1744–1753.
- KDD-2018-LianZZCXS #feature model #interactive #named #recommendation
- xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems (JL, XZ, FZ, ZC, XX0, GS), pp. 1754–1763.
- KDD-2018-LiangZRK #profiling #twitter
- Dynamic Embeddings for User Profiling in Twitter (SL, XZ0, ZR, EK), pp. 1764–1773.
- KDD-2018-LinZXZ #learning #multi #performance #scalability
- Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning (KL, RZ, ZX, JZ), pp. 1774–1783.
- KDD-2018-LiuTZ #modelling #predict
- Enhancing Predictive Modeling of Nested Spatial Data through Group-Level Feature Disaggregation (BL, PNT, JZ), pp. 1784–1793.
- KDD-2018-LiuHWH #network #self
- Content to Node: Self-Translation Network Embedding (JL0, ZH, LW, YH), pp. 1794–1802.
- KDD-2018-LiuYH #detection
- Adversarial Detection with Model Interpretation (NL, HY, XH), pp. 1803–1811.
- KDD-2018-LiuHLH #induction #network #on the #taxonomy
- On Interpretation of Network Embedding via Taxonomy Induction (NL, XH, JL, XH), pp. 1812–1820.
- KDD-2018-LiuHHLCSH #education #online
- Finding Similar Exercises in Online Education Systems (QL0, ZH, ZH, CL, EC, YS0, GH), pp. 1821–1830.
- KDD-2018-LiuZMZ #memory management #named #recommendation
- STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation (QL, YZ, RM, HZ), pp. 1831–1839.
- KDD-2018-LiuKY #network #social
- Active Opinion Maximization in Social Networks (XL, XK, PSY), pp. 1840–1849.
- KDD-2018-LiuZC #learning #metric #performance
- Efficient Similar Region Search with Deep Metric Learning (YL, KZ0, GC), pp. 1850–1859.
- KDD-2018-LiuZZLYWY #graph #interactive #proximity #semantics
- Interactive Paths Embedding for Semantic Proximity Search on Heterogeneous Graphs (ZL, VWZ, ZZ, ZL, HY, MW, JY), pp. 1860–1869.
- KDD-2018-LiuXC #recommendation
- Context-aware Academic Collaborator Recommendation (ZL0, XX, LC0), pp. 1870–1879.
- KDD-2018-LuJZDZW #learning #named #semantics #visual notation
- R-VQA: Learning Visual Relation Facts with Semantic Attention for Visual Question Answering (PL, LJ, WZ0, ND, MZ0, JW), pp. 1880–1889.
- KDD-2018-LuoCTSLCY #information management #invariant #learning #named #network
- TINET: Learning Invariant Networks via Knowledge Transfer (CL, ZC, LAT, AS, ZL, HC, JY), pp. 1890–1899.
- KDD-2018-Luo0Z0ZP #online #sketching
- Sketched Follow-The-Regularized-Leader for Online Factorization Machine (LL, WZ0, ZZ, WZ0, TZ, JP), pp. 1900–1909.
- KDD-2018-MaGSYZZ #health #predict #risk management
- Risk Prediction on Electronic Health Records with Prior Medical Knowledge (FM, JG0, QS, QY, JZ, AZ), pp. 1910–1919.
- KDD-2018-MaCW0 #network #taxonomy
- Hierarchical Taxonomy Aware Network Embedding (JM, PC0, XW0, WZ0), pp. 1920–1929.
- KDD-2018-MaZYCHC #learning #modelling #multi
- Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts (JM, ZZ, XY, JC, LH, EHC), pp. 1930–1939.
- KDD-2018-ManapragadaWS #performance
- Extremely Fast Decision Tree (CM, GIW, MS), pp. 1953–1962.
- KDD-2018-ManzoorLA #performance
- Extremely Fast Decision Tree (EAM, HL, LA), pp. 1963–1972.
- KDD-2018-MautzYPB #clustering
- Discovering Non-Redundant K-means Clusterings in Optimal Subspaces (DM, WY0, CP, CB), pp. 1973–1982.
- KDD-2018-ReisMSB
- Classifying and Counting with Recurrent Contexts (DMdR, AGM, DFS, GEAPAB), pp. 1983–1992.
- KDD-2018-NaKY #data type #detection #effectiveness #memory management #named #performance
- DILOF: Effective and Memory Efficient Local Outlier Detection in Data Streams (GSN, DHK, HY), pp. 1993–2002.
- KDD-2018-NguyenLNPW #big data #kernel #robust
- Robust Bayesian Kernel Machine via Stein Variational Gradient Descent for Big Data (KN, TL, TDN, DQP, GIW), pp. 2003–2011.
- KDD-2018-NieHL #learning #multi
- Calibrated Multi-Task Learning (FN, ZH, XL), pp. 2012–2021.
- KDD-2018-NieTL #adaptation #clustering #multi
- Multiview Clustering via Adaptively Weighted Procrustes (FN, LT, XL), pp. 2022–2030.
- KDD-2018-NiuZWTGC #correlation #privacy #statistics
- Unlocking the Value of Privacy: Trading Aggregate Statistics over Private Correlated Data (CN, ZZ, FW0, ST, XG, GC), pp. 2031–2040.
- KDD-2018-PangCCL #detection #learning #random
- Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection (GP, LC, LC, HL), pp. 2041–2050.
- KDD-2018-Park0 #effectiveness #graph #named #performance #scalability
- EvoGraph: An Effective and Efficient Graph Upscaling Method for Preserving Graph Properties (HP, MSK0), pp. 2051–2059.
- KDD-2018-PeakeW #mining #modelling #recommendation
- Explanation Mining: Post Hoc Interpretability of Latent Factor Models for Recommendation Systems (GP, JW), pp. 2060–2069.
- KDD-2018-PellegrinaV #mining #mutation testing #performance #permutation #testing
- Efficient Mining of the Most Significant Patterns with Permutation Testing (LP, FV), pp. 2070–2079.
- KDD-2018-PerrosPPVYdSS #named #scalability
- SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping (IP, EEP, HP, RWV, XY, Cd, WFS, JS), pp. 2080–2089.
- KDD-2018-Pouget-AbadieMP #clustering #optimisation #random
- Optimizing Cluster-based Randomized Experiments under Monotonicity (JPA, VSM, DCP, EMA), pp. 2090–2099.
- KDD-2018-QahtanEFO0 #detection #named #robust
- FAHES: A Robust Disguised Missing Values Detector (AAQ, AKE, RCF, MO, NT0), pp. 2100–2109.
- KDD-2018-QiuTMDW0 #learning #named #predict #social
- DeepInf: Social Influence Prediction with Deep Learning (JQ, JT, HM, YD, KW, JT0), pp. 2110–2119.
- KDD-2018-RabbanyBD
- Active Search of Connections for Case Building and Combating Human Trafficking (RR, DB, AD), pp. 2120–2129.
- KDD-2018-RiondatoV #mining #named #pseudo
- MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension (MR, FV), pp. 2130–2139.
- KDD-2018-SachanX #framework #parsing #source code
- Parsing to Programs: A Framework for Situated QA (MS, EPX), pp. 2140–2149.
- KDD-2018-Sanei-MehriST #network
- Butterfly Counting in Bipartite Networks (SVSM, AES, ST), pp. 2150–2159.
- KDD-2018-SatohTY #equivalence #incremental
- Accelerated Equivalence Structure Extraction via Pairwise Incremental Search (SS, YT, HY), pp. 2160–2169.
- KDD-2018-ShanJZM #retrieval #semantics
- Recurrent Binary Embedding for GPU-Enabled Exhaustive Retrieval from Billion-Scale Semantic Vectors (YS, JJ, JZ0, JCM), pp. 2170–2179.
- KDD-2018-ShenWLZRVS0 #named #taxonomy
- HiExpan: Task-Guided Taxonomy Construction by Hierarchical Tree Expansion (JS, ZW, DL, CZ0, XR, MTV, BMS, JH0), pp. 2180–2189.
- KDD-2018-ShiZGZ0 #learning #network
- Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks (YS, QZ, FG, CZ0, JH0), pp. 2190–2199.
- KDD-2018-SiddiquiFDWTA #online #optimisation
- Feedback-Guided Anomaly Discovery via Online Optimization (MAS, AF, TGD, RW, AT, DWA), pp. 2200–2209.
- KDD-2018-SifferFTL #question
- Are your data gathered? (AS, PAF, AT, CL), pp. 2210–2218.
- KDD-2018-SinghJ #ranking
- Fairness of Exposure in Rankings (AS, TJ), pp. 2219–2228.
- KDD-2018-SongXCCT #multi #rank #retrieval
- Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval (DS, NX, WC, HC, DT), pp. 2229–2238.
- KDD-2018-SpeicherHGGSWZ #algorithm #approach #difference
- A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual &Group Unfairness via Inequality Indices (TS, HH, NGH, KPG, AS, AW, MBZ), pp. 2239–2248.
- KDD-2018-SunHYC #multi
- Multi-Round Influence Maximization (LS, WH0, PSY, WC), pp. 2249–2258.
- KDD-2018-SunBZWZ #modelling #multi #network
- Subspace Network: Deep Multi-Task Censored Regression for Modeling Neurodegenerative Diseases (MS, IMB, LZ, ZW, JZ), pp. 2259–2268.
- KDD-2018-SunZZGH #analysis #online #query
- Exploring the Urban Region-of-Interest through the Analysis of Online Map Search Queries (YS, HZ, FZ, JG, QH), pp. 2269–2278.
- KDD-2018-SuttonHGC #execution #summary
- Data Diff: Interpretable, Executable Summaries of Changes in Distributions for Data Wrangling (CAS, TH, JG, RC), pp. 2279–2288.
- KDD-2018-TangW #learning #modelling #performance #ranking #recommendation
- Ranking Distillation: Learning Compact Ranking Models With High Performance for Recommender System (JT, KW), pp. 2289–2298.
- KDD-2018-TayTH #multi #network
- Multi-Cast Attention Networks (YT, LAT, SCH), pp. 2299–2308.
- KDD-2018-TayLH #multi #network #recommendation
- Multi-Pointer Co-Attention Networks for Recommendation (YT, ATL, SCH), pp. 2309–2318.
- KDD-2018-Ting #bound #empirical #estimation #fault #named #using
- Count-Min: Optimal Estimation and Tight Error Bounds using Empirical Error Distributions (DT), pp. 2319–2328.
- KDD-2018-TingZZ #kernel
- Isolation Kernel and Its Effect on SVM (KMT, YZ, ZHZ), pp. 2329–2337.
- KDD-2018-TomasiTSV #network
- Latent Variable Time-varying Network Inference (FT, VT, SS, AV), pp. 2338–2346.
- KDD-2018-TsitsulinMKBM #graph #named
- NetLSD: Hearing the Shape of a Graph (AT, DM, PK, AMB, EM), pp. 2347–2356.
- KDD-2018-TuCWY0 #equivalence #network #recursion
- Deep Recursive Network Embedding with Regular Equivalence (KT, PC0, XW0, PSY, WZ0), pp. 2357–2366.
- KDD-2018-RijnH #dataset
- Hyperparameter Importance Across Datasets (JNvR, FH), pp. 2367–2376.
- KDD-2018-VandalKDGNG #learning #nondeterminism
- Quantifying Uncertainty in Discrete-Continuous and Skewed Data with Bayesian Deep Learning (TV, EK, JGD, SG, RRN, ARG), pp. 2377–2386.
- KDD-2018-0001C #performance #probability #recommendation
- Efficient Attribute Recommendation with Probabilistic Guarantee (CW0, KC), pp. 2387–2396.
- KDD-2018-WangJZEC #behaviour #learning #multi
- Multi-Type Itemset Embedding for Learning Behavior Success (DW, MJ0, QZ, ZE, NVC), pp. 2397–2406.
- KDD-2018-WangZBZCY #learning #mobile #performance #privacy
- Not Just Privacy: Improving Performance of Private Deep Learning in Mobile Cloud (JW0, JZ, WB, XZ, BC, PSY), pp. 2407–2416.
- KDD-2018-WangOWW #learning #modelling
- Learning Credible Models (JW, JO, HW, JW), pp. 2417–2426.
- KDD-2018-WangZ #learning #problem #towards
- Towards Mitigating the Class-Imbalance Problem for Partial Label Learning (JW, MLZ), pp. 2427–2436.
- KDD-2018-WangWLW #analysis #composition #multi #network
- Multilevel Wavelet Decomposition Network for Interpretable Time Series Analysis (JW, ZW, JL, JW), pp. 2437–2446.
- KDD-2018-WangZHZ #learning #network #recommendation
- Supervised Reinforcement Learning with Recurrent Neural Network for Dynamic Treatment Recommendation (LW, WZ0, XH, HZ), pp. 2447–2456.
- KDD-2018-WangFZWZA #analysis #behaviour #how #learning #representation
- You Are How You Drive: Peer and Temporal-Aware Representation Learning for Driving Behavior Analysis (PW, YF, JZ, PW, YZ, CCA), pp. 2457–2466.
- KDD-2018-WangYHLWH #memory management #network #recommendation #streaming
- Neural Memory Streaming Recommender Networks with Adversarial Training (QW, HY, ZH, DL, HW, ZH), pp. 2467–2475.
- KDD-2018-WangXQ0T #towards
- Towards Evolutionary Compression (YW, CX0, JQ, CX0, DT), pp. 2476–2485.
- KDD-2018-WangJ #predict
- Smoothed Dilated Convolutions for Improved Dense Prediction (ZW, SJ), pp. 2486–2495.
- KDD-2018-WeiZYL #approach #learning #named
- IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light Control (HW, GZ, HY, ZL), pp. 2496–2505.
- KDD-2018-WuCYXXA #clustering #random #scalability #using
- Scalable Spectral Clustering Using Random Binning Features (LW, PYC, IEHY, FX, YX, CCA), pp. 2506–2515.
- KDD-2018-WuYYZ #learning #process
- Decoupled Learning for Factorial Marked Temporal Point Processes (WW, JY, XY, HZ), pp. 2516–2525.
- KDD-2018-WuYC #learning #realtime
- Deep Censored Learning of the Winning Price in the Real Time Bidding (WCHW, MYY, MSC), pp. 2526–2535.
- KDD-2018-WuZW #graph #on the #using
- On Discrimination Discovery and Removal in Ranked Data using Causal Graph (YW, LZ0, XW), pp. 2536–2544.
- KDD-2018-Xie0S #markov
- Geographical Hidden Markov Tree for Flood Extent Mapping (MX, ZJ0, AMS), pp. 2545–2554.
- KDD-2018-XuLDH #learning #metric #robust #using
- New Robust Metric Learning Model Using Maximum Correntropy Criterion (JX0, LL, CD, HH), pp. 2555–2564.
- KDD-2018-XuBDMS #monitoring #multimodal #named
- RAIM: Recurrent Attentive and Intensive Model of Multimodal Patient Monitoring Data (YX, SB, SRD, KOM, JS), pp. 2565–2573.
- KDD-2018-YanZ #modelling #towards
- Coupled Context Modeling for Deep Chit-Chat: Towards Conversations between Human and Computer (RY0, DZ0), pp. 2574–2583.
- KDD-2018-0003GZZSL #data type #named
- HeavyGuardian: Separate and Guard Hot Items in Data Streams (TY0, JG, HZ, LZ0, LS, XL), pp. 2584–2593.
- KDD-2018-YangWZL0 #classification #multi #network
- Complex Object Classification: A Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport (YY, YFW, DCZ, ZBL, YJ0), pp. 2594–2603.
- KDD-2018-YardimKMG #predict #question
- Can Who-Edits-What Predict Edit Survival? (ABY, VK, LM, MG), pp. 2604–2613.
- KDD-2018-YasarC #network
- An Iterative Global Structure-Assisted Labeled Network Aligner (AY, ÜVÇ), pp. 2614–2623.
- KDD-2018-YeZXZGD #mobile #paradigm #parallel #performance #recommendation
- Multi-User Mobile Sequential Recommendation: An Efficient Parallel Computing Paradigm (ZY, LZ, KX, WZ, YG, YD), pp. 2624–2633.
- KDD-2018-YinCLZYW #clustering #modelling
- Model-based Clustering of Short Text Streams (JY, DC, ZL, WZ0, XY0, JW), pp. 2634–2642.
- KDD-2018-YinHCLZXH #image
- Transcribing Content from Structural Images with Spotlight Mechanism (YY, ZH, EC, QL0, FZ, XX, GH), pp. 2643–2652.
- KDD-2018-YoshidaTK #distance #learning #metric
- Safe Triplet Screening for Distance Metric Learning (TY, IT, MK), pp. 2653–2662.
- KDD-2018-YuZCASZCW #learning #network
- Learning Deep Network Representations with Adversarially Regularized Autoencoders (WY, CZ, WC, CCA, DS, BZ, HC, WW0), pp. 2663–2671.
- KDD-2018-YuCAZCW #approach #detection #flexibility #named #network
- NetWalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic Networks (WY, WC, CCA, KZ0, HC, WW0), pp. 2672–2681.
- KDD-2018-ZangC0 #empirical #learning
- Learning and Interpreting Complex Distributions in Empirical Data (CZ, PC0, WZ0), pp. 2682–2691.
- KDD-2018-ZhangZGWC #estimation #infinity #process
- Simultaneous Urban Region Function Discovery and Popularity Estimation via an Infinite Urbanization Process Model (BZ, LZ, TG, YW0, FC0), pp. 2692–2700.
- KDD-2018-ZhangTCSJSV0 #adaptation #clustering #named #taxonomy #topic
- TaxoGen: Unsupervised Topic Taxonomy Construction by Adaptive Term Embedding and Clustering (CZ0, FT, XC, JS, MJ0, BMS, MV, JH0), pp. 2701–2709.
- KDD-2018-ZhangWCDYW #modelling #named #reliability
- StockAssIstant: A Stock AI Assistant for Reliability Modeling of Stock Comments (CZ, YW, CC, CD, HY, HW), pp. 2710–2719.
- KDD-2018-ZhangLDFY #generative #on the
- On the Generative Discovery of Structured Medical Knowledge (CZ, YL, ND, WF0, PSY), pp. 2720–2728.
- KDD-2018-ZhangLMGS #approach #multi #named
- TextTruth: An Unsupervised Approach to Discover Trustworthy Information from Multi-Sourced Text Data (HZ, YL, FM, JG0, LS), pp. 2729–2737.
- KDD-2018-ZhangW #crowdsourcing #multi
- Multi-Label Inference for Crowdsourcing (JZ, XW0), pp. 2738–2747.
- KDD-2018-ZhangBLLZP
- Trajectory-driven Influential Billboard Placement (PZ, ZB, YL, GL0, YZ, ZP), pp. 2748–2757.
- KDD-2018-ZhangWLTYY #learning #matrix #self
- Discrete Ranking-based Matrix Factorization with Self-Paced Learning (YZ0, HW, DL, IWT, HY, GY), pp. 2758–2767.
- KDD-2018-ZhangZCMHWT #adaptation #learning #online #symmetry
- Online Adaptive Asymmetric Active Learning for Budgeted Imbalanced Data (YZ0, PZ, JC, WM, JH, QW, MT), pp. 2768–2777.
- KDD-2018-ZhangCWPY0 #network #proximity
- Arbitrary-Order Proximity Preserved Network Embedding (ZZ, PC0, XW0, JP, XY, WZ0), pp. 2778–2786.
- KDD-2018-ZhaoAS0 #classification #dependence #performance #predict #using
- Prediction-time Efficient Classification Using Feature Computational Dependencies (LZ0, AAF, MS, KZ0), pp. 2787–2796.
- KDD-2018-ZhaoSWZN0 #framework #named #rest
- REST: A Reference-based Framework for Spatio-temporal Trajectory Compression (YZ0, SS, YW, BZ, QVHN, KZ0), pp. 2797–2806.
- KDD-2018-ZhouHYF #named #network #representation #self
- SPARC: Self-Paced Network Representation for Few-Shot Rare Category Characterization (DZ, JH, HY, WF), pp. 2807–2816.
- KDD-2018-ZhouNH #adaptation #education #memory management #what
- Unlearn What You Have Learned: Adaptive Crowd Teaching with Exponentially Decayed Memory Learners (YZ, ARN, JH), pp. 2817–2826.
- KDD-2018-ZhuCW0 #network
- Deep Variational Network Embedding in Wasserstein Space (DZ, PC0, DW, WZ0), pp. 2827–2836.
- KDD-2018-ZhuLYQLZZWXC #framework #generative #music
- XiaoIce Band: A Melody and Arrangement Generation Framework for Pop Music (HZ, QL0, NJY, CQ, JL, KZ, GZ, FW, YX, EC), pp. 2837–2846.
- KDD-2018-ZugnerAG #graph #network
- Adversarial Attacks on Neural Networks for Graph Data (DZ, AA, SG), pp. 2847–2856.
- KDD-2018-ZuoLLGHW #network
- Embedding Temporal Network via Neighborhood Formation (YZ, GL, HL, JG, XH, JW), pp. 2857–2866.
- KDD-2018-Abowd #difference #privacy
- The U.S. Census Bureau Adopts Differential Privacy (JMA), p. 2867.
- KDD-2018-Datar #e-commerce
- Data Science at Flipkart - An Indian E-Commerce company (MD), p. 2868.
- KDD-2018-Dong #challenge #graph
- Challenges and Innovations in Building a Product Knowledge Graph (XLD), p. 2869.
- KDD-2018-Fan #approach #machine learning
- The Pinterest Approach to Machine Learning (LF), p. 2870.
- KDD-2018-Hodson #big data #future of
- Humans, Jobs, and the Economy: The Future of Finance in the Age of Big Data (JH), p. 2871.
- KDD-2018-ProvostHWYN
- Societal Impact of Data Science and Artificial Intelligence (FJP, JH, JMW, QY, JN), pp. 2872–2873.
- KDD-2018-Raghavan #community #realtime #recommendation
- Building Near Realtime Contextual Recommendations for Active Communities on LinkedIn (HR), p. 2874.
- KDD-2018-Rajan #scalability
- Computational Advertising at Scale (SR), p. 2875.
- KDD-2018-Re
- Software 2.0 and Snorkel: Beyond Hand-Labeled Data (CR), p. 2876.
- KDD-2018-Sirosh #classification
- Planet-Scale Land Cover Classification with FPGAs (JS), p. 2877.
- KDD-2018-Smola #algorithm #hardware #tool support
- Algorithms, Data, Hardware and Tools: A Perfect Storm (AS), p. 2878.
- KDD-2018-Walraven
- Data Science and Entertainment Production (JW), p. 2879.
- KDD-2018-Xing #algorithm #co-evolution #design #machine learning #named
- SysML: On System and Algorithm Co-design for Practical Machine Learning (EPX), p. 2880.