Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter

Yike Guo, Faisal Farooq
Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining
KDD, 2018.

KER
DBLP
Scholar
DOI
Full names Links ISxN
@proceedings{KDD-2018,
	doi           = "10.1145/3219819",
	editor        = "Yike Guo and Faisal Farooq",
	publisher     = "{ACM}",
	title         = "{Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining}",
	year          = 2018,
}

Contents (310 items)

KDD-2018-Hand
Data Science for Financial Applications (DJH), p. 1.
KDD-2018-Roth #design
Market Design and Computerized Marketplaces (AER), p. 2.
KDD-2018-Teh #big data #learning #on the #problem
On Big Data Learning for Small Data Problems (YWT), p. 3.
KDD-2018-Wing
Data for Good: Abstract (JMW), p. 4.
KDD-2018-AbernethyCFSW #named #pipes and filters
ActiveRemediation: The Search for Lead Pipes in Flint, Michigan (JDA, AC, AF, EMS, JW), pp. 5–14.
KDD-2018-AckermannWUNRLB #framework #machine learning #modelling #policy
Deploying Machine Learning Models for Public Policy: A Framework (KA, JW, ADU, HN, ANR, SJL, JB, MD, CC, LH, RG), pp. 15–22.
KDD-2018-AgarwalBGXYZ #online #parametricity #problem #ranking
Online Parameter Selection for Web-based Ranking Problems (DA, KB0, SG, YX, YY, LZ), pp. 23–32.
KDD-2018-AyhanCS #predict
Predicting Estimated Time of Arrival for Commercial Flights (SA, PC, HS), pp. 33–42.
KDD-2018-BaiZEV #learning #representation
Interpretable Representation Learning for Healthcare via Capturing Disease Progression through Time (TB, SZ, BLE, SV), pp. 43–51.
KDD-2018-BaiOZFRST #n-gram #query #scalability
Scalable Query N-Gram Embedding for Improving Matching and Relevance in Sponsored Search (XB0, EO, YZ, AF, AR, RS, AT), pp. 52–61.
KDD-2018-BhagatMLV #modelling #recommendation
Buy It Again: Modeling Repeat Purchase Recommendations (RB, SM, AL, SV), pp. 62–70.
KDD-2018-BorisyukGS #detection #image #named #recognition #scalability
Rosetta: Large Scale System for Text Detection and Recognition in Images (FB, AG, VS), pp. 71–79.
KDD-2018-CardosoDV #learning #personalisation #recommendation #semistructured data #towards
Product Characterisation towards Personalisation: Learning Attributes from Unstructured Data to Recommend Fashion Products (ÂC, FD, SV), pp. 80–89.
KDD-2018-ChenCL #dataset #open data
Rotation-blended CNNs on a New Open Dataset for Tropical Cyclone Image-to-intensity Regression (BC, BFC, HTL), pp. 90–99.
KDD-2018-ChenLZLZL #collaboration #distributed
Distributed Collaborative Hashing and Its Applications in Ant Financial (CC, ZL, PZ, LL, JZ, XL), pp. 100–109.
KDD-2018-ChenHNLLWX #multi #named
MIX: Multi-Channel Information Crossing for Text Matching (HC, FXH, DN, DL, KL, CW, YX), pp. 110–119.
KDD-2018-ChenLZK #graph #how
How LinkedIn Economic Graph Bonds Information and Product: Applications in LinkedIn Salary (XC, YL, LZ, KK), pp. 120–129.
KDD-2018-ChenCYY #optimisation #scalability
Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data (XC, PC0, LY, SY), pp. 130–138.
KDD-2018-Christakopoulou #approach #interactive #recommendation #towards
Q&R: A Two-Stage Approach toward Interactive Recommendation (KC, AB, RL, SJ, EHC), pp. 139–148.
KDD-2018-ChungCHLE #behaviour #detection #visual notation
Detection of Apathy in Alzheimer Patients by Analysing Visual Scanning Behaviour with RNNs (JC, SAC, NH, KLL, ME), pp. 149–157.
KDD-2018-ComarelaDBCC #web
Assessing Candidate Preference through Web Browsing History (GC, RD, PB, DDC, MC), pp. 158–167.
KDD-2018-ConoverHBSS #named #performance
Pangloss: Fast Entity Linking in Noisy Text Environments (MDC, MH, SB, PS, SS), pp. 168–176.
KDD-2018-DabrowskiRGAM #modelling #quality
State Space Models for Forecasting Water Quality Variables: An Application in Aquaculture Prawn Farming (JJD, AR, AG, SA, JM), pp. 177–185.
KDD-2018-DaltayanniDA #automation #segmentation #using
Automated Audience Segmentation Using Reputation Signals (MD, AD, LdA), pp. 186–195.
KDD-2018-DasSCHLCKC #learning #named #performance #using
SHIELD: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression (ND, MS, STC, FH, SL, LC, MEK, DHC), pp. 196–204.
KDD-2018-DavoudiAZE #adaptation
Adaptive Paywall Mechanism for Digital News Media (HD, AA, MZ, GE), pp. 205–214.
KDD-2018-RouxPMVF #approach #detection #machine learning #using
Tax Fraud Detection for Under-Reporting Declarations Using an Unsupervised Machine Learning Approach (DdR, BP, AM, MDPV, CF), pp. 215–222.
KDD-2018-DecroosHD #automation
Automatic Discovery of Tactics in Spatio-Temporal Soccer Match Data (TD, JVH, JD), pp. 223–232.
KDD-2018-DengKL #metric #novel
Applying the Delta Method in Metric Analytics: A Practical Guide with Novel Ideas (AD, UK, JL), pp. 233–242.
KDD-2018-DietheHKPSSTTF #lessons learnt
Releasing eHealth Analytics into the Wild: Lessons Learnt from the SPHERE Project (TD, MH, MK, MPN, KS, HS, ET, NT, PAF), pp. 243–252.
KDD-2018-FanHZYA #detection #exclamation
Gotcha - Sly Malware!: Scorpion A Metagraph2vec Based Malware Detection System (YF, SH, YZ, YY, MA), pp. 253–262.
KDD-2018-FirmaniMMN #information management #towards
Towards Knowledge Discovery from the Vatican Secret Archives. In Codice Ratio - Episode 1: Machine Transcription of the Manuscripts (DF, MM, PM, EN), pp. 263–272.
KDD-2018-FunkhouserMAPB
Device Graphing by Example (KF, MM, ECA, PP, PB), pp. 273–282.
KDD-2018-GaoGYSTXWYRMC #optimisation #realtime
Near Real-time Optimization of Activity-based Notifications (YG, VG, JY, CS, ZT, PJX, CW, SY, RR, AM, SC), pp. 283–292.
KDD-2018-GittensRWMGPKRM #data analysis #library #scalability #using
Accelerating Large-Scale Data Analysis by Offloading to High-Performance Computing Libraries using Alchemist (AG, KR, SW, MWM, LG, P, JK, MFR, KJM), pp. 293–301.
KDD-2018-GohSVH #learning #predict #rule-based #using
Using Rule-Based Labels for Weak Supervised Learning: A ChemNet for Transferable Chemical Property Prediction (GBG, CS, AV, NOH), pp. 302–310.
KDD-2018-GrbovicC #personalisation #ranking #realtime #using
Real-time Personalization using Embeddings for Search Ranking at Airbnb (MG, HC), pp. 311–320.
KDD-2018-HangPN #behaviour #predict #student
Exploring Student Check-In Behavior for Improved Point-of-Interest Prediction (MH, IP, JN), pp. 321–330.
KDD-2018-HarelR #network #prototype #using
Accelerating Prototype-Based Drug Discovery using Conditional Diversity Networks (SH, KR), pp. 331–339.
KDD-2018-He0LRLTZ #detection #using
Detecting Vehicle Illegal Parking Events using Sharing Bikes' Trajectories (TH, JB0, RL, SR, YL, CT, YZ0), pp. 340–349.
KDD-2018-HuF #analysis #multimodal #sentiment
Multimodal Sentiment Analysis To Explore the Structure of Emotions (AH, SRF), pp. 350–358.
KDD-2018-HuWYKHCHWMS #visual notation
Web-Scale Responsive Visual Search at Bing (HH, YW, LY, PK, LH, X(C, JH, YW, MM, AS), pp. 359–367.
KDD-2018-HuDZ0X #analysis #e-commerce #formal method #learning #rank
Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization, Analysis, and Application (YH, QD, AZ, YY0, YX), pp. 368–377.
KDD-2018-HulotAJ #effectiveness #predict #towards
Towards Station-Level Demand Prediction for Effective Rebalancing in Bike-Sharing Systems (PH, DA, SDJ), pp. 378–386.
KDD-2018-HundmanCLCS #detection #parametricity #using
Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding (KH, VC, CL, IC, TS), pp. 387–395.
KDD-2018-IyengarLISW #approach #data-driven #energy #named #performance
WattHome: A Data-driven Approach for Energy Efficiency Analytics at City-scale (SI, SL, DEI, PJS, BW), pp. 396–405.
KDD-2018-Janakiraman #learning #multi #safety #using
Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning (VMJ), pp. 406–415.
KDD-2018-JauvionG #realtime
Optimal Allocation of Real-Time-Bidding and Direct Campaigns (GJ, NG), pp. 416–424.
KDD-2018-JauvionGSGG #optimisation #using
Optimization of a SSP's Header Bidding Strategy using Thompson Sampling (GJ, NG, PDS, AG, SG), pp. 425–432.
KDD-2018-KhuranaASV #using
Resolving Abstract Anaphora Implicitly in Conversational Assistants using a Hierarchically stacked RNN (PK, PA, GMS, LV), pp. 433–442.
KDD-2018-KochGGWGX #framework #named #optimisation
Autotune: A Derivative-free Optimization Framework for Hyperparameter Tuning (PK, OG, SG, BW, JG, YX), pp. 443–452.
KDD-2018-Kokkodis #online #recommendation
Dynamic Recommendations for Sequential Hiring Decisions in Online Labor Markets (MK), pp. 453–461.
KDD-2018-KoptelovZBBC #identification #named
PrePeP: A Tool for the Identification and Characterization of Pan Assay Interference Compounds (MK, AZ, PB, RB, BC), pp. 462–471.
KDD-2018-KumarRBVWKEFMZG #machine learning #using
Using Machine Learning to Assess the Risk of and Prevent Water Main Breaks (AK, SAAR, BB, RAV, KHW, CK, SE, AF, AM, JZ, RG), pp. 472–480.
KDD-2018-LeeAVN #collaboration #comprehension #learning #metric #video
Collaborative Deep Metric Learning for Video Understanding (JL, SAEH, BV, AN), pp. 481–490.
KDD-2018-LeeS #bias #estimation #online
Winner's Curse: Bias Estimation for Total Effects of Features in Online Controlled Experiments (MRL, MS), pp. 491–499.
KDD-2018-LeeGZ #generative #network #query
Rare Query Expansion Through Generative Adversarial Networks in Search Advertising (MCL, BG, RZ), pp. 500–508.
KDD-2018-LiRMLKC #named #predict
TATC: Predicting Alzheimer's Disease with Actigraphy Data (JL, YR, HM, ZL0, TK, HC), pp. 509–518.
KDD-2018-LiHZ #graph #predict
E-tail Product Return Prediction via Hypergraph-based Local Graph Cut (JL, JH, YZ), pp. 519–527.
KDD-2018-LiYCYZ #3d #algorithm #constraints #data-driven #delivery #problem
A Data-Driven Three-Layer Algorithm for Split Delivery Vehicle Routing Problem with 3D Container Loading Constraint (XL, MY, DC, JY, JZ), pp. 528–536.
KDD-2018-LiaoZWMCYGW #learning #predict #sequence
Deep Sequence Learning with Auxiliary Information for Traffic Prediction (BL, JZ, CW0, DM, TC, SY, YG, FW), pp. 537–546.
KDD-2018-LinKLZSXZQZ #big data #identification #interactive #multi #named
BigIN4: Instant, Interactive Insight Identification for Multi-Dimensional Big Data (QL, WK, JGL, HZ0, KS, YX, ZZ, BQ, DZ), pp. 547–555.
KDD-2018-LiuCMCMJJ #lessons learnt #normalisation #online #scalability
Lessons Learned from Developing and Deploying a Large-Scale Employer Name Normalization System for Online Recruitment (QL, JC, TM, AC, CM, FJ, VJ), pp. 556–565.
KDD-2018-LiuSZ #detection
Where Will Dockless Shared Bikes be Stacked?: - Parking Hotspots Detection in a New City (ZL, YS, YZ), pp. 566–575.
KDD-2018-MiloS #data analysis #interactive #platform
Next-Step Suggestions for Modern Interactive Data Analysis Platforms (TM, AS), pp. 576–585.
KDD-2018-MolinoZW #named #network #ranking
COTA: Improving the Speed and Accuracy of Customer Support through Ranking and Deep Networks (PM, HZ, YCW), pp. 586–595.
KDD-2018-NiOLLOZS #e-commerce #learning #multi
Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks (YN, DO, SL, XL, WO, AZ, LS), pp. 596–605.
KDD-2018-BeeckMSVD #machine learning #predict
Fatigue Prediction in Outdoor Runners Via Machine Learning and Sensor Fusion (TODB, WM, KS0, BV, JD), pp. 606–615.
KDD-2018-OshriHACDWBLE #assessment #framework #learning #quality #using
Infrastructure Quality Assessment in Africa using Satellite Imagery and Deep Learning (BO, AH, PA, XC, PD, JW, MB, DBL, SE), pp. 616–625.
KDD-2018-PetroniRNNPSL
An Extensible Event Extraction System With Cross-Media Event Resolution (FP, NR, TN, AN, ZP, SS, JLL), pp. 626–635.
KDD-2018-RaoTL #comprehension #framework #learning #multi #network #platform #query
Multi-Task Learning with Neural Networks for Voice Query Understanding on an Entertainment Platform (JR, FT, JL), pp. 636–645.
KDD-2018-RongXYM #big data #named #realtime
Du-Parking: Spatio-Temporal Big Data Tells You Realtime Parking Availability (YR, ZX, RY, XM), pp. 646–654.
KDD-2018-Ruhrlander0U #modelling #predict #using
Improving Box Office Result Predictions for Movies Using Consumer-Centric Models (RPR, MB0, MU), pp. 655–664.
KDD-2018-SadrediniGBRSW #hardware #novel #rule-based #scalability
A Scalable Solution for Rule-Based Part-of-Speech Tagging on Novel Hardware Accelerators (ES, DG, CB, RR, KS, HW), pp. 665–674.
KDD-2018-SafaviDK #case study
Career Transitions and Trajectories: A Case Study in Computing (TS, MD, DK), pp. 675–684.
KDD-2018-SamelM #learning
Active Deep Learning to Tune Down the Noise in Labels (KS, XM), pp. 685–694.
KDD-2018-SatoNHMHAM #detection #learning
Managing Computer-Assisted Detection System Based on Transfer Learning with Negative Transfer Inhibition (IS, YN, SH, SM, NH, OA, YM), pp. 695–704.
KDD-2018-Schlosser0 #approach #contest #data-driven #online
Dynamic Pricing under Competition on Online Marketplaces: A Data-Driven Approach (RS, MB0), pp. 705–714.
KDD-2018-ShashikumarSCN #bidirectional #detection #network #using
Detection of Paroxysmal Atrial Fibrillation using Attention-based Bidirectional Recurrent Neural Networks (SPS, AJS, GDC, SN), pp. 715–723.
KDD-2018-ShenLOLZC #framework #named #network #novel #predict
StepDeep: A Novel Spatial-temporal Mobility Event Prediction Framework based on Deep Neural Network (BS, XL, YO, ML, WZ, KMC), pp. 724–733.
KDD-2018-ShengTWXZN #email #information management #privacy #scalability
Anatomy of a Privacy-Safe Large-Scale Information Extraction System Over Email (YS0, ST, JBW, JX0, QZ, MN), pp. 734–743.
KDD-2018-ShiPHMWMMLDC #performance
Audience Size Forecasting: Fast and Smart Budget Planning for Media Buyers (YS, CP, RH, WM, MHW, JM, PM, PL, RDW, RC), pp. 744–753.
KDD-2018-SilvisSL #named #student
PittGrub: A Frustration-Free System to Reduce Food Waste by Notifying Hungry College Students (MS, AS, AL), pp. 754–763.
KDD-2018-WaliaHCCLKNBAM #pipes and filters #predict #risk management
A Dynamic Pipeline for Spatio-Temporal Fire Risk Prediction (BSW, QH, JC, FC, JL, NK, PN, JB, GA, MM), pp. 764–773.
KDD-2018-StaarDAB #corpus #documentation #framework #machine learning #platform #scalability
Corpus Conversion Service: A Machine Learning Platform to Ingest Documents at Scale (PWJS, MD, CA, CB), pp. 774–782.
KDD-2018-SugiuraKYMAY #visual notation #visualisation
Estimating Glaucomatous Visual Sensitivity from Retinal Thickness with Pattern-Based Regularization and Visualization (HS, TK, SY, HM, RA, KY), pp. 783–792.
KDD-2018-SunTYWZ #identification #modelling #predict
Identify Susceptible Locations in Medical Records via Adversarial Attacks on Deep Predictive Models (MS, FT, JY, FW, JZ), pp. 793–801.
KDD-2018-SureshGG #learning #multi
Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU (HS, JJG, JVG), pp. 802–810.
KDD-2018-TaoXGLFZ #detection #framework #game studies #named
NGUARD: A Game Bot Detection Framework for NetEase MMORPGs (JT, JX, LG, YL, CF, ZZ), pp. 811–820.
KDD-2018-Valdez-VivasGKF #detection #distributed #framework #performance #realtime
A Real-time Framework for Detecting Efficiency Regressions in a Globally Distributed Codebase (MVV, CG, AK, EF, KG, SC), pp. 821–829.
KDD-2018-WangWW #network
Inferring Metapopulation Propagation Network for Intra-city Epidemic Control and Prevention (JW, XW, JW), pp. 830–838.
KDD-2018-WangHZZZL #e-commerce #recommendation
Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba (JW, PH, HZ, ZZ, BZ, DLL), pp. 839–848.
KDD-2018-WangMJYXJSG #detection #multi #named #network
EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection (YW, FM, ZJ, YY0, GX, KJ, LS, JG0), pp. 849–857.
KDD-2018-WangFY #learning
Learning to Estimate the Travel Time (ZW, KF, JY), pp. 858–866.
KDD-2018-WongPKFJ #biology #community #named #network #performance
SDREGION: Fast Spotting of Changing Communities in Biological Networks (SWHW, CP, MK, CF, IJ), pp. 867–875.
KDD-2018-XieCS #detection #online
False Discovery Rate Controlled Heterogeneous Treatment Effect Detection for Online Controlled Experiments (YX, NC, XS), pp. 876–885.
KDD-2018-ShenYXEBW0 #graph #mobile #scalability
Mobile Access Record Resolution on Large-Scale Identifier-Linkage Graphs (XS, HY, WX, ME, JB, ZW, CW0), pp. 886–894.
KDD-2018-XuDH #named #online #quality
SQR: Balancing Speed, Quality and Risk in Online Experiments (YX, WD, SH), pp. 895–904.
KDD-2018-XuLGZLNLBY #approach #learning #on-demand #order #platform #scalability
Large-Scale Order Dispatch in On-Demand Ride-Hailing Platforms: A Learning and Planning Approach (ZX, ZL, QG, DZ, QL, JN, CL, WB, JY), pp. 905–913.
KDD-2018-YangSJ0 #clustering #ll #mobile #predict #social
I Know You'll Be Back: Interpretable New User Clustering and Churn Prediction on a Mobile Social Application (CY, XS, LJ, JH0), pp. 914–922.
KDD-2018-YangZTWCH #case study #contest #image #learning #recognition
Deep Learning for Practical Image Recognition: Case Study on Kaggle Competitions (XY, ZZ, SGT, LW, VC0, SCHH), pp. 923–931.
KDD-2018-YeQCWZMYZ
Customized Regression Model for Airbnb Dynamic Pricing (PY, JQ, JC, CHW, YZ, SDM, FY, LZ), pp. 932–940.
KDD-2018-YeZZGZ #evaluation #named #parallel #performance
RapidScorer: Fast Tree Ensemble Evaluation by Maximizing Compactness in Data Level Parallelization (TY, HZ, WYZ, BG, RZ), pp. 941–950.
KDD-2018-YiZWLZ #distributed #network #predict #quality
Deep Distributed Fusion Network for Air Quality Prediction (XY, JZ, ZW, TL, YZ0), pp. 965–973.
KDD-2018-YingHCEHL #graph #network #recommendation
Graph Convolutional Neural Networks for Web-Scale Recommender Systems (RY, RH, KC, PE, WLH, JL), pp. 974–983.
KDD-2018-YuanZY #approach #learning #named #predict
Hetero-ConvLSTM: A Deep Learning Approach to Traffic Accident Prediction on Heterogeneous Spatio-Temporal Data (ZY, XZ, TY), pp. 984–992.
KDD-2018-ZhangPZZZRJ #visual notation
Visual Search at Alibaba (YZ, PP, YZ, KZ, YZ, XR, RJ), pp. 993–1001.
KDD-2018-ZhangZY0 #ambiguity #clustering #maintenance
Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop (YZ, FZ, PY, JT0), pp. 1002–1011.
KDD-2018-ZhaoNOE #optimisation
Notification Volume Control and Optimization System at Pinterest (BZ, KN, BO, JE), pp. 1012–1020.
KDD-2018-0009QG0H #learning #realtime
Deep Reinforcement Learning for Sponsored Search Real-time Bidding (JZ0, GQ, ZG, WZ0, XH), pp. 1021–1030.
KDD-2018-ZhaoLSY #e-commerce #learning #representation
Learning and Transferring IDs Representation in E-commerce (KZ, YL, ZS, CY), pp. 1031–1039.
KDD-2018-ZhaoZDXTY #feedback #learning #recommendation
Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (XZ, LZ, ZD, LX, JT, DY), pp. 1040–1048.
KDD-2018-ZhengMD0 #named
OpenTag: Open Attribute Value Extraction from Product Profiles (GZ, SM, XLD, FL0), pp. 1049–1058.
KDD-2018-ZhouZSFZMYJLG #network #predict
Deep Interest Network for Click-Through Rate Prediction (GZ, XZ, CS, YF, HZ, XM, YY, JJ, HL, KG), pp. 1059–1068.
KDD-2018-ZhouNMZ #interactive
Discovering Latent Patterns of Urban Cultural Interactions in WeChat for Modern City Planning (XZ, AN, CM, ZZ), pp. 1069–1078.
KDD-2018-ZhuLZLHLG #learning #recommendation
Learning Tree-based Deep Model for Recommender Systems (HZ, XL, PZ, GL, JH, HL, KG), pp. 1079–1088.
KDD-2018-AbebeKPT #persuasion
Opinion Dynamics with Varying Susceptibility to Persuasion (RA, JMK, DCP, CET), pp. 1089–1098.
KDD-2018-AcharyaGZ #markov #topic
A Dual Markov Chain Topic Model for Dynamic Environments (AA, JG, MZ), pp. 1099–1108.
KDD-2018-Anagnostopoulos #algorithm #online #outsourcing
Algorithms for Hiring and Outsourcing in the Online Labor Market (AA, CC0, AF, SL, ET), pp. 1109–1118.
KDD-2018-BachemL0 #clustering #lightweight #scalability
Scalable k -Means Clustering via Lightweight Coresets (OB, ML, AK0), pp. 1119–1127.
KDD-2018-BaiQD #behaviour #modelling
Discovering Models from Structural and Behavioral Brain Imaging Data (ZB, BQ, ID), pp. 1128–1137.
KDD-2018-BateniEM #distributed #optimisation #sketching
Optimal Distributed Submodular Optimization via Sketching (MB, HE, VSM), pp. 1138–1147.
KDD-2018-Benson0T #sequence #set
Sequences of Sets (ARB, RK0, AT), pp. 1148–1157.
KDD-2018-CaiWGSJ #learning #multi
Deep Adversarial Learning for Multi-Modality Missing Data Completion (LC, ZW, HG, DS, SJ), pp. 1158–1166.
KDD-2018-0022PYT #algorithm #effectiveness #network #optimisation
Network Connectivity Optimization: Fundamental Limits and Effective Algorithms (CC0, RP, LY, HT), pp. 1167–1176.
KDD-2018-ChenYWWNL #metric #named #network #predict
PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction (HC, HY, WW0, HW0, QVHN, XL), pp. 1177–1186.
KDD-2018-Chen0DTHT #learning #online #recommendation
Stabilizing Reinforcement Learning in Dynamic Environment with Application to Online Recommendation (SYC, YY0, QD, JT, HKH, HHT), pp. 1187–1196.
KDD-2018-ChenLB #network #social
Quantifying and Minimizing Risk of Conflict in Social Networks (XC, JL, TDB), pp. 1197–1205.
KDD-2018-ChenHNHYH #clustering #normalisation #scalability
Spectral Clustering of Large-scale Data by Directly Solving Normalized Cut (XC0, WH, FN, DH, MY0, JZH), pp. 1206–1215.
KDD-2018-ChenCDLW0C #information management #named
Learning-to-Ask: Knowledge Acquisition via 20 Questions (YC, BC, XD, JGL, YW, WZ0, YC), pp. 1216–1225.
KDD-2018-ChenGCSSJ #3d #image #network
Voxel Deconvolutional Networks for 3D Brain Image Labeling (YC, HG, LC, MS, DS, SJ), pp. 1226–1234.
KDD-2018-Christakopoulou18a #modelling #recommendation
Local Latent Space Models for Top-N Recommendation (EC, GK), pp. 1235–1243.
KDD-2018-ChuHHWP #consistency #linear #network
Exact and Consistent Interpretation for Piecewise Linear Neural Networks: A Closed Form Solution (LC, XH, JH, LW, JP), pp. 1244–1253.
KDD-2018-CobbEMR #calculus #identification #multi #process
Identifying Sources and Sinks in the Presence of Multiple Agents with Gaussian Process Vector Calculus (ADC, RE, AM, SJR), pp. 1254–1262.
KDD-2018-Cohen-SteinerKS #approximate #graph
Approximating the Spectrum of a Graph (DCS, WK, CS, GV), pp. 1263–1271.
KDD-2018-ConteMSGMV #community #detection #named #network #scalability
D2K: Scalable Community Detection in Massive Networks via Small-Diameter k-Plexes (AC, TDM, DDS, RG, AM, LV), pp. 1272–1281.
KDD-2018-ConteFGMSU #network #similarity
Node Similarity with q -Grams for Real-World Labeled Networks (AC, GF, RG, AM, KS, TU), pp. 1282–1291.
KDD-2018-DahiyaKW #algebra #empirical #evaluation #linear #sketching
An Empirical Evaluation of Sketching for Numerical Linear Algebra (YD, DK, DPW), pp. 1292–1300.
KDD-2018-DiPSC #learning #morphism
Transfer Learning via Feature Isomorphism Discovery (SD, JP, YS, LC), pp. 1301–1309.
KDD-2018-DingLBZL #framework #named
Investor-Imitator: A Framework for Trading Knowledge Extraction (YD, WL, JB0, DZ, TYL), pp. 1310–1319.
KDD-2018-DonnatZHL #learning
Learning Structural Node Embeddings via Diffusion Wavelets (CD, MZ, DH, JL), pp. 1320–1329.
KDD-2018-DuTZTZ
Demand-Aware Charger Planning for Electric Vehicle Sharing (BD, YT, ZZ, QT, WZ), pp. 1330–1338.
KDD-2018-DuT #equation #graph #mining #named #performance
FASTEN: Fast Sylvester Equation Solver for Graph Mining (BD, HT), pp. 1339–1347.
KDD-2018-DuDXZW #multi
Multi-view Adversarially Learned Inference for Cross-domain Joint Distribution Matching (CD, CD, XX, CZ, HW), pp. 1348–1357.
KDD-2018-DuLSH #predict #towards
Towards Explanation of DNN-based Prediction with Guided Feature Inversion (MD, NL, QS, XH), pp. 1358–1367.
KDD-2018-Ertl #algorithm #set
BagMinHash - Minwise Hashing Algorithm for Weighted Sets (OE), pp. 1368–1377.
KDD-2018-EswaranFGM #detection #graph #named #streaming
SpotLight: Detecting Anomalies in Streaming Graphs (DE, CF, SG, NM), pp. 1378–1386.
KDD-2018-FoxAJPW #learning #multi #predict
Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories (IF, LA, MJ, RPB, JW), pp. 1387–1395.
KDD-2018-FuWHW #approximate #fault #learning #reduction #scalability
Scalable Active Learning by Approximated Error Reduction (WF, MW, SH, XW0), pp. 1396–1405.
KDD-2018-GaoH #network #self
Self-Paced Network Embedding (HG, HH), pp. 1406–1415.
KDD-2018-GaoWJ #graph #network #scalability
Large-Scale Learnable Graph Convolutional Networks (HG, ZW, SJ), pp. 1416–1424.
KDD-2018-GargR #exclamation #recommendation
Route Recommendations for Idle Taxi Drivers: Find Me the Shortest Route to a Customer! (NG, SR), pp. 1425–1434.
KDD-2018-DizajiWH #generative #network
Semi-Supervised Generative Adversarial Network for Gene Expression Inference (KGD, XW, HH), pp. 1435–1444.
KDD-2018-GiesekeI #random
Training Big Random Forests with Little Resources (FG, CI), pp. 1445–1454.
KDD-2018-GongW #analysis #behaviour #modelling #network #sentiment #social
When Sentiment Analysis Meets Social Network: A Holistic User Behavior Modeling in Opinionated Data (LG, HW), pp. 1455–1464.
KDD-2018-GorovitsGPB #community #learning #named
LARC: Learning Activity-Regularized Overlapping Communities Across Time (AG, EG, EEP, PB), pp. 1465–1474.
KDD-2018-GuYCH #algorithm #incremental #learning
New Incremental Learning Algorithm for Semi-Supervised Support Vector Machine (BG, XTY, SC, HH), pp. 1475–1484.
KDD-2018-GuiL #robust
R 2 SDH: Robust Rotated Supervised Discrete Hashing (JG, PL0), pp. 1485–1493.
KDD-2018-HanSSZ #collaboration #learning #multi #semistructured data
Multi-label Learning with Highly Incomplete Data via Collaborative Embedding (YH, GS, YS, XZ0), pp. 1494–1503.
KDD-2018-HauserEM #optimisation
PCA by Determinant Optimisation has no Spurious Local Optima (RAH, AE, HFM), pp. 1504–1511.
KDD-2018-HerlandsMWN #automation #design
Automated Local Regression Discontinuity Design Discovery (WH, EMI, AGW, DBN), pp. 1512–1520.
KDD-2018-HongCL #kernel #learning
Disturbance Grassmann Kernels for Subspace-Based Learning (JH, HC, FL), pp. 1521–1530.
KDD-2018-HuSZY #recommendation
Leveraging Meta-path based Context for Top- N Recommendation with A Neural Co-Attention Model (BH, CS, WXZ, PSY), pp. 1531–1540.
KDD-2018-HuaiMLSSZ #learning #metric #probability
Metric Learning from Probabilistic Labels (MH, CM, YL, QS, LS, AZ), pp. 1541–1550.
KDD-2018-Huang0LSG
Generalized Score Functions for Causal Discovery (BH, KZ0, YL, BS, CG), pp. 1551–1560.
KDD-2018-HuangMFFT #performance #symmetry
Accurate and Fast Asymmetric Locality-Sensitive Hashing Scheme for Maximum Inner Product Search (QH, GM, JF, QF, AKHT), pp. 1561–1570.
KDD-2018-HuangXXSNC #matrix
Active Feature Acquisition with Supervised Matrix Completion (SJH, MX, MKX, MS, GN, SC), pp. 1571–1579.
KDD-2018-HuangZL #adaptation #effectiveness
Cost-Effective Training of Deep CNNs with Active Model Adaptation (SJH, JWZ, ZYL), pp. 1580–1588.
KDD-2018-JeongJ #learning #multi
Variable Selection and Task Grouping for Multi-Task Learning (JYJ, CHJ), pp. 1589–1598.
KDD-2018-JhaXWGZ #concept #evolution #named
Concepts-Bridges: Uncovering Conceptual Bridges Based on Biomedical Concept Evolution (KJ, GX, YW, VG, AZ), pp. 1599–1607.
KDD-2018-0001YSLQT #predict
A Treatment Engine by Predicting Next-Period Prescriptions (BJ0, HY, LS, CL, YQ, JT), pp. 1608–1616.
KDD-2018-KuangCAXL #predict
Stable Prediction across Unknown Environments (KK, PC0, SA, RX, BL0), pp. 1617–1626.
KDD-2018-KumagaiI #bound #learning
Learning Dynamics of Decision Boundaries without Additional Labeled Data (AK, TI), pp. 1627–1636.
KDD-2018-Le0V #learning #memory management
Dual Memory Neural Computer for Asynchronous Two-view Sequential Learning (HL, TT0, SV), pp. 1637–1645.
KDD-2018-LeeLW #algorithm #distributed #empirical
A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization (CpL, CHL, SJW), pp. 1646–1655.
KDD-2018-LeeK #adaptation #privacy
Concentrated Differentially Private Gradient Descent with Adaptive per-Iteration Privacy Budget (JL, DK), pp. 1656–1665.
KDD-2018-LeeRK #classification #graph #using
Graph Classification using Structural Attention (JBL, RAR, XK), pp. 1666–1674.
KDD-2018-Li0ZQHG0 #information management #named #reliability
TruePIE: Discovering Reliable Patterns in Pattern-Based Information Extraction (QL0, MJ0, XZ, MQ, TPH, JG0, JH0), pp. 1675–1684.
KDD-2018-LiAKMVW #evaluation #modelling #policy #ranking
Offline Evaluation of Ranking Policies with Click Models (SL, YAY, BK, SM, VV, ZW), pp. 1685–1694.
KDD-2018-LiFWSYL #estimation #learning #multi #representation
Multi-task Representation Learning for Travel Time Estimation (YL, KF, ZW, CS, JY, YL0), pp. 1695–1704.
KDD-2018-LiMSGLDQ0 #performance #privacy
An Efficient Two-Layer Mechanism for Privacy-Preserving Truth Discovery (YL, CM, LS, JG0, QL0, BD, ZQ, KR0), pp. 1705–1714.
KDD-2018-LiY #classification #learning #network #policy
Learning Adversarial Networks for Semi-Supervised Text Classification via Policy Gradient (YL, JY), pp. 1715–1723.
KDD-2018-LiZY #approach #learning
Dynamic Bike Reposition: A Spatio-Temporal Reinforcement Learning Approach (YL, YZ, QY), pp. 1724–1733.
KDD-2018-LiZLHMC #behaviour #learning #recommendation
Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors (ZL, HZ, QL0, ZH, TM, EC), pp. 1734–1743.
KDD-2018-Lian0ZGCT0 #higher-order #network #proximity
High-order Proximity Preserving Information Network Hashing (DL, KZ0, VWZ, YG, LC, IWT, XX0), pp. 1744–1753.
KDD-2018-LianZZCXS #feature model #interactive #named #recommendation
xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems (JL, XZ, FZ, ZC, XX0, GS), pp. 1754–1763.
KDD-2018-LiangZRK #profiling #twitter
Dynamic Embeddings for User Profiling in Twitter (SL, XZ0, ZR, EK), pp. 1764–1773.
KDD-2018-LinZXZ #learning #multi #performance #scalability
Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning (KL, RZ, ZX, JZ), pp. 1774–1783.
KDD-2018-LiuTZ #modelling #predict
Enhancing Predictive Modeling of Nested Spatial Data through Group-Level Feature Disaggregation (BL, PNT, JZ), pp. 1784–1793.
KDD-2018-LiuHWH #network #self
Content to Node: Self-Translation Network Embedding (JL0, ZH, LW, YH), pp. 1794–1802.
KDD-2018-LiuYH #detection
Adversarial Detection with Model Interpretation (NL, HY, XH), pp. 1803–1811.
KDD-2018-LiuHLH #induction #network #on the #taxonomy
On Interpretation of Network Embedding via Taxonomy Induction (NL, XH, JL, XH), pp. 1812–1820.
KDD-2018-LiuHHLCSH #education #online
Finding Similar Exercises in Online Education Systems (QL0, ZH, ZH, CL, EC, YS0, GH), pp. 1821–1830.
KDD-2018-LiuZMZ #memory management #named #recommendation
STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation (QL, YZ, RM, HZ), pp. 1831–1839.
KDD-2018-LiuKY #network #social
Active Opinion Maximization in Social Networks (XL, XK, PSY), pp. 1840–1849.
KDD-2018-LiuZC #learning #metric #performance
Efficient Similar Region Search with Deep Metric Learning (YL, KZ0, GC), pp. 1850–1859.
KDD-2018-LiuZZLYWY #graph #interactive #proximity #semantics
Interactive Paths Embedding for Semantic Proximity Search on Heterogeneous Graphs (ZL, VWZ, ZZ, ZL, HY, MW, JY), pp. 1860–1869.
KDD-2018-LiuXC #recommendation
Context-aware Academic Collaborator Recommendation (ZL0, XX, LC0), pp. 1870–1879.
KDD-2018-LuJZDZW #learning #named #semantics #visual notation
R-VQA: Learning Visual Relation Facts with Semantic Attention for Visual Question Answering (PL, LJ, WZ0, ND, MZ0, JW), pp. 1880–1889.
KDD-2018-LuoCTSLCY #information management #invariant #learning #named #network
TINET: Learning Invariant Networks via Knowledge Transfer (CL, ZC, LAT, AS, ZL, HC, JY), pp. 1890–1899.
KDD-2018-Luo0Z0ZP #online #sketching
Sketched Follow-The-Regularized-Leader for Online Factorization Machine (LL, WZ0, ZZ, WZ0, TZ, JP), pp. 1900–1909.
KDD-2018-MaGSYZZ #health #predict #risk management
Risk Prediction on Electronic Health Records with Prior Medical Knowledge (FM, JG0, QS, QY, JZ, AZ), pp. 1910–1919.
KDD-2018-MaCW0 #network #taxonomy
Hierarchical Taxonomy Aware Network Embedding (JM, PC0, XW0, WZ0), pp. 1920–1929.
KDD-2018-MaZYCHC #learning #modelling #multi
Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts (JM, ZZ, XY, JC, LH, EHC), pp. 1930–1939.
KDD-2018-ManapragadaWS #performance
Extremely Fast Decision Tree (CM, GIW, MS), pp. 1953–1962.
KDD-2018-ManzoorLA #performance
Extremely Fast Decision Tree (EAM, HL, LA), pp. 1963–1972.
KDD-2018-MautzYPB #clustering
Discovering Non-Redundant K-means Clusterings in Optimal Subspaces (DM, WY0, CP, CB), pp. 1973–1982.
KDD-2018-ReisMSB
Classifying and Counting with Recurrent Contexts (DMdR, AGM, DFS, GEAPAB), pp. 1983–1992.
KDD-2018-NaKY #data type #detection #effectiveness #memory management #named #performance
DILOF: Effective and Memory Efficient Local Outlier Detection in Data Streams (GSN, DHK, HY), pp. 1993–2002.
KDD-2018-NguyenLNPW #big data #kernel #robust
Robust Bayesian Kernel Machine via Stein Variational Gradient Descent for Big Data (KN, TL, TDN, DQP, GIW), pp. 2003–2011.
KDD-2018-NieHL #learning #multi
Calibrated Multi-Task Learning (FN, ZH, XL), pp. 2012–2021.
KDD-2018-NieTL #adaptation #clustering #multi
Multiview Clustering via Adaptively Weighted Procrustes (FN, LT, XL), pp. 2022–2030.
KDD-2018-NiuZWTGC #correlation #privacy #statistics
Unlocking the Value of Privacy: Trading Aggregate Statistics over Private Correlated Data (CN, ZZ, FW0, ST, XG, GC), pp. 2031–2040.
KDD-2018-PangCCL #detection #learning #random
Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection (GP, LC, LC, HL), pp. 2041–2050.
KDD-2018-Park0 #effectiveness #graph #named #performance #scalability
EvoGraph: An Effective and Efficient Graph Upscaling Method for Preserving Graph Properties (HP, MSK0), pp. 2051–2059.
KDD-2018-PeakeW #mining #modelling #recommendation
Explanation Mining: Post Hoc Interpretability of Latent Factor Models for Recommendation Systems (GP, JW), pp. 2060–2069.
KDD-2018-PellegrinaV #mining #mutation testing #performance #permutation #testing
Efficient Mining of the Most Significant Patterns with Permutation Testing (LP, FV), pp. 2070–2079.
KDD-2018-PerrosPPVYdSS #named #scalability
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping (IP, EEP, HP, RWV, XY, Cd, WFS, JS), pp. 2080–2089.
KDD-2018-Pouget-AbadieMP #clustering #optimisation #random
Optimizing Cluster-based Randomized Experiments under Monotonicity (JPA, VSM, DCP, EMA), pp. 2090–2099.
KDD-2018-QahtanEFO0 #detection #named #robust
FAHES: A Robust Disguised Missing Values Detector (AAQ, AKE, RCF, MO, NT0), pp. 2100–2109.
KDD-2018-QiuTMDW0 #learning #named #predict #social
DeepInf: Social Influence Prediction with Deep Learning (JQ, JT, HM, YD, KW, JT0), pp. 2110–2119.
KDD-2018-RabbanyBD
Active Search of Connections for Case Building and Combating Human Trafficking (RR, DB, AD), pp. 2120–2129.
KDD-2018-RiondatoV #mining #named #pseudo
MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension (MR, FV), pp. 2130–2139.
KDD-2018-SachanX #framework #parsing #source code
Parsing to Programs: A Framework for Situated QA (MS, EPX), pp. 2140–2149.
KDD-2018-Sanei-MehriST #network
Butterfly Counting in Bipartite Networks (SVSM, AES, ST), pp. 2150–2159.
KDD-2018-SatohTY #equivalence #incremental
Accelerated Equivalence Structure Extraction via Pairwise Incremental Search (SS, YT, HY), pp. 2160–2169.
KDD-2018-ShanJZM #retrieval #semantics
Recurrent Binary Embedding for GPU-Enabled Exhaustive Retrieval from Billion-Scale Semantic Vectors (YS, JJ, JZ0, JCM), pp. 2170–2179.
KDD-2018-ShenWLZRVS0 #named #taxonomy
HiExpan: Task-Guided Taxonomy Construction by Hierarchical Tree Expansion (JS, ZW, DL, CZ0, XR, MTV, BMS, JH0), pp. 2180–2189.
KDD-2018-ShiZGZ0 #learning #network
Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks (YS, QZ, FG, CZ0, JH0), pp. 2190–2199.
KDD-2018-SiddiquiFDWTA #online #optimisation
Feedback-Guided Anomaly Discovery via Online Optimization (MAS, AF, TGD, RW, AT, DWA), pp. 2200–2209.
KDD-2018-SifferFTL #question
Are your data gathered? (AS, PAF, AT, CL), pp. 2210–2218.
KDD-2018-SinghJ #ranking
Fairness of Exposure in Rankings (AS, TJ), pp. 2219–2228.
KDD-2018-SongXCCT #multi #rank #retrieval
Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval (DS, NX, WC, HC, DT), pp. 2229–2238.
KDD-2018-SpeicherHGGSWZ #algorithm #approach #difference
A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual &Group Unfairness via Inequality Indices (TS, HH, NGH, KPG, AS, AW, MBZ), pp. 2239–2248.
KDD-2018-SunHYC #multi
Multi-Round Influence Maximization (LS, WH0, PSY, WC), pp. 2249–2258.
KDD-2018-SunBZWZ #modelling #multi #network
Subspace Network: Deep Multi-Task Censored Regression for Modeling Neurodegenerative Diseases (MS, IMB, LZ, ZW, JZ), pp. 2259–2268.
KDD-2018-SunZZGH #analysis #online #query
Exploring the Urban Region-of-Interest through the Analysis of Online Map Search Queries (YS, HZ, FZ, JG, QH), pp. 2269–2278.
KDD-2018-SuttonHGC #execution #summary
Data Diff: Interpretable, Executable Summaries of Changes in Distributions for Data Wrangling (CAS, TH, JG, RC), pp. 2279–2288.
KDD-2018-TangW #learning #modelling #performance #ranking #recommendation
Ranking Distillation: Learning Compact Ranking Models With High Performance for Recommender System (JT, KW), pp. 2289–2298.
KDD-2018-TayTH #multi #network
Multi-Cast Attention Networks (YT, LAT, SCH), pp. 2299–2308.
KDD-2018-TayLH #multi #network #recommendation
Multi-Pointer Co-Attention Networks for Recommendation (YT, ATL, SCH), pp. 2309–2318.
KDD-2018-Ting #bound #empirical #estimation #fault #named #using
Count-Min: Optimal Estimation and Tight Error Bounds using Empirical Error Distributions (DT), pp. 2319–2328.
KDD-2018-TingZZ #kernel
Isolation Kernel and Its Effect on SVM (KMT, YZ, ZHZ), pp. 2329–2337.
KDD-2018-TomasiTSV #network
Latent Variable Time-varying Network Inference (FT, VT, SS, AV), pp. 2338–2346.
KDD-2018-TsitsulinMKBM #graph #named
NetLSD: Hearing the Shape of a Graph (AT, DM, PK, AMB, EM), pp. 2347–2356.
KDD-2018-TuCWY0 #equivalence #network #recursion
Deep Recursive Network Embedding with Regular Equivalence (KT, PC0, XW0, PSY, WZ0), pp. 2357–2366.
KDD-2018-RijnH #dataset
Hyperparameter Importance Across Datasets (JNvR, FH), pp. 2367–2376.
KDD-2018-VandalKDGNG #learning #nondeterminism
Quantifying Uncertainty in Discrete-Continuous and Skewed Data with Bayesian Deep Learning (TV, EK, JGD, SG, RRN, ARG), pp. 2377–2386.
KDD-2018-0001C #performance #probability #recommendation
Efficient Attribute Recommendation with Probabilistic Guarantee (CW0, KC), pp. 2387–2396.
KDD-2018-WangJZEC #behaviour #learning #multi
Multi-Type Itemset Embedding for Learning Behavior Success (DW, MJ0, QZ, ZE, NVC), pp. 2397–2406.
KDD-2018-WangZBZCY #learning #mobile #performance #privacy
Not Just Privacy: Improving Performance of Private Deep Learning in Mobile Cloud (JW0, JZ, WB, XZ, BC, PSY), pp. 2407–2416.
KDD-2018-WangOWW #learning #modelling
Learning Credible Models (JW, JO, HW, JW), pp. 2417–2426.
KDD-2018-WangZ #learning #problem #towards
Towards Mitigating the Class-Imbalance Problem for Partial Label Learning (JW, MLZ), pp. 2427–2436.
KDD-2018-WangWLW #analysis #composition #multi #network
Multilevel Wavelet Decomposition Network for Interpretable Time Series Analysis (JW, ZW, JL, JW), pp. 2437–2446.
KDD-2018-WangZHZ #learning #network #recommendation
Supervised Reinforcement Learning with Recurrent Neural Network for Dynamic Treatment Recommendation (LW, WZ0, XH, HZ), pp. 2447–2456.
KDD-2018-WangFZWZA #analysis #behaviour #how #learning #representation
You Are How You Drive: Peer and Temporal-Aware Representation Learning for Driving Behavior Analysis (PW, YF, JZ, PW, YZ, CCA), pp. 2457–2466.
KDD-2018-WangYHLWH #memory management #network #recommendation #streaming
Neural Memory Streaming Recommender Networks with Adversarial Training (QW, HY, ZH, DL, HW, ZH), pp. 2467–2475.
KDD-2018-WangXQ0T #towards
Towards Evolutionary Compression (YW, CX0, JQ, CX0, DT), pp. 2476–2485.
KDD-2018-WangJ #predict
Smoothed Dilated Convolutions for Improved Dense Prediction (ZW, SJ), pp. 2486–2495.
KDD-2018-WeiZYL #approach #learning #named
IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light Control (HW, GZ, HY, ZL), pp. 2496–2505.
KDD-2018-WuCYXXA #clustering #random #scalability #using
Scalable Spectral Clustering Using Random Binning Features (LW, PYC, IEHY, FX, YX, CCA), pp. 2506–2515.
KDD-2018-WuYYZ #learning #process
Decoupled Learning for Factorial Marked Temporal Point Processes (WW, JY, XY, HZ), pp. 2516–2525.
KDD-2018-WuYC #learning #realtime
Deep Censored Learning of the Winning Price in the Real Time Bidding (WCHW, MYY, MSC), pp. 2526–2535.
KDD-2018-WuZW #graph #on the #using
On Discrimination Discovery and Removal in Ranked Data using Causal Graph (YW, LZ0, XW), pp. 2536–2544.
KDD-2018-Xie0S #markov
Geographical Hidden Markov Tree for Flood Extent Mapping (MX, ZJ0, AMS), pp. 2545–2554.
KDD-2018-XuLDH #learning #metric #robust #using
New Robust Metric Learning Model Using Maximum Correntropy Criterion (JX0, LL, CD, HH), pp. 2555–2564.
KDD-2018-XuBDMS #monitoring #multimodal #named
RAIM: Recurrent Attentive and Intensive Model of Multimodal Patient Monitoring Data (YX, SB, SRD, KOM, JS), pp. 2565–2573.
KDD-2018-YanZ #modelling #towards
Coupled Context Modeling for Deep Chit-Chat: Towards Conversations between Human and Computer (RY0, DZ0), pp. 2574–2583.
KDD-2018-0003GZZSL #data type #named
HeavyGuardian: Separate and Guard Hot Items in Data Streams (TY0, JG, HZ, LZ0, LS, XL), pp. 2584–2593.
KDD-2018-YangWZL0 #classification #multi #network
Complex Object Classification: A Multi-Modal Multi-Instance Multi-Label Deep Network with Optimal Transport (YY, YFW, DCZ, ZBL, YJ0), pp. 2594–2603.
KDD-2018-YardimKMG #predict #question
Can Who-Edits-What Predict Edit Survival? (ABY, VK, LM, MG), pp. 2604–2613.
KDD-2018-YasarC #network
An Iterative Global Structure-Assisted Labeled Network Aligner (AY, ÜVÇ), pp. 2614–2623.
KDD-2018-YeZXZGD #mobile #paradigm #parallel #performance #recommendation
Multi-User Mobile Sequential Recommendation: An Efficient Parallel Computing Paradigm (ZY, LZ, KX, WZ, YG, YD), pp. 2624–2633.
KDD-2018-YinCLZYW #clustering #modelling
Model-based Clustering of Short Text Streams (JY, DC, ZL, WZ0, XY0, JW), pp. 2634–2642.
KDD-2018-YinHCLZXH #image
Transcribing Content from Structural Images with Spotlight Mechanism (YY, ZH, EC, QL0, FZ, XX, GH), pp. 2643–2652.
KDD-2018-YoshidaTK #distance #learning #metric
Safe Triplet Screening for Distance Metric Learning (TY, IT, MK), pp. 2653–2662.
KDD-2018-YuZCASZCW #learning #network
Learning Deep Network Representations with Adversarially Regularized Autoencoders (WY, CZ, WC, CCA, DS, BZ, HC, WW0), pp. 2663–2671.
KDD-2018-YuCAZCW #approach #detection #flexibility #named #network
NetWalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic Networks (WY, WC, CCA, KZ0, HC, WW0), pp. 2672–2681.
KDD-2018-ZangC0 #empirical #learning
Learning and Interpreting Complex Distributions in Empirical Data (CZ, PC0, WZ0), pp. 2682–2691.
KDD-2018-ZhangZGWC #estimation #infinity #process
Simultaneous Urban Region Function Discovery and Popularity Estimation via an Infinite Urbanization Process Model (BZ, LZ, TG, YW0, FC0), pp. 2692–2700.
KDD-2018-ZhangTCSJSV0 #adaptation #clustering #named #taxonomy #topic
TaxoGen: Unsupervised Topic Taxonomy Construction by Adaptive Term Embedding and Clustering (CZ0, FT, XC, JS, MJ0, BMS, MV, JH0), pp. 2701–2709.
KDD-2018-ZhangWCDYW #modelling #named #reliability
StockAssIstant: A Stock AI Assistant for Reliability Modeling of Stock Comments (CZ, YW, CC, CD, HY, HW), pp. 2710–2719.
KDD-2018-ZhangLDFY #generative #on the
On the Generative Discovery of Structured Medical Knowledge (CZ, YL, ND, WF0, PSY), pp. 2720–2728.
KDD-2018-ZhangLMGS #approach #multi #named
TextTruth: An Unsupervised Approach to Discover Trustworthy Information from Multi-Sourced Text Data (HZ, YL, FM, JG0, LS), pp. 2729–2737.
KDD-2018-ZhangW #crowdsourcing #multi
Multi-Label Inference for Crowdsourcing (JZ, XW0), pp. 2738–2747.
KDD-2018-ZhangBLLZP
Trajectory-driven Influential Billboard Placement (PZ, ZB, YL, GL0, YZ, ZP), pp. 2748–2757.
KDD-2018-ZhangWLTYY #learning #matrix #self
Discrete Ranking-based Matrix Factorization with Self-Paced Learning (YZ0, HW, DL, IWT, HY, GY), pp. 2758–2767.
KDD-2018-ZhangZCMHWT #adaptation #learning #online #symmetry
Online Adaptive Asymmetric Active Learning for Budgeted Imbalanced Data (YZ0, PZ, JC, WM, JH, QW, MT), pp. 2768–2777.
KDD-2018-ZhangCWPY0 #network #proximity
Arbitrary-Order Proximity Preserved Network Embedding (ZZ, PC0, XW0, JP, XY, WZ0), pp. 2778–2786.
KDD-2018-ZhaoAS0 #classification #dependence #performance #predict #using
Prediction-time Efficient Classification Using Feature Computational Dependencies (LZ0, AAF, MS, KZ0), pp. 2787–2796.
KDD-2018-ZhaoSWZN0 #framework #named #rest
REST: A Reference-based Framework for Spatio-temporal Trajectory Compression (YZ0, SS, YW, BZ, QVHN, KZ0), pp. 2797–2806.
KDD-2018-ZhouHYF #named #network #representation #self
SPARC: Self-Paced Network Representation for Few-Shot Rare Category Characterization (DZ, JH, HY, WF), pp. 2807–2816.
KDD-2018-ZhouNH #adaptation #education #memory management #what
Unlearn What You Have Learned: Adaptive Crowd Teaching with Exponentially Decayed Memory Learners (YZ, ARN, JH), pp. 2817–2826.
KDD-2018-ZhuCW0 #network
Deep Variational Network Embedding in Wasserstein Space (DZ, PC0, DW, WZ0), pp. 2827–2836.
KDD-2018-ZhuLYQLZZWXC #framework #generative #music
XiaoIce Band: A Melody and Arrangement Generation Framework for Pop Music (HZ, QL0, NJY, CQ, JL, KZ, GZ, FW, YX, EC), pp. 2837–2846.
KDD-2018-ZugnerAG #graph #network
Adversarial Attacks on Neural Networks for Graph Data (DZ, AA, SG), pp. 2847–2856.
KDD-2018-ZuoLLGHW #network
Embedding Temporal Network via Neighborhood Formation (YZ, GL, HL, JG, XH, JW), pp. 2857–2866.
KDD-2018-Abowd #difference #privacy
The U.S. Census Bureau Adopts Differential Privacy (JMA), p. 2867.
KDD-2018-Datar #e-commerce
Data Science at Flipkart - An Indian E-Commerce company (MD), p. 2868.
KDD-2018-Dong #challenge #graph
Challenges and Innovations in Building a Product Knowledge Graph (XLD), p. 2869.
KDD-2018-Fan #approach #machine learning
The Pinterest Approach to Machine Learning (LF), p. 2870.
KDD-2018-Hodson #big data #future of
Humans, Jobs, and the Economy: The Future of Finance in the Age of Big Data (JH), p. 2871.
KDD-2018-ProvostHWYN
Societal Impact of Data Science and Artificial Intelligence (FJP, JH, JMW, QY, JN), pp. 2872–2873.
KDD-2018-Raghavan #community #realtime #recommendation
Building Near Realtime Contextual Recommendations for Active Communities on LinkedIn (HR), p. 2874.
KDD-2018-Rajan #scalability
Computational Advertising at Scale (SR), p. 2875.
KDD-2018-Re
Software 2.0 and Snorkel: Beyond Hand-Labeled Data (CR), p. 2876.
KDD-2018-Sirosh #classification
Planet-Scale Land Cover Classification with FPGAs (JS), p. 2877.
KDD-2018-Smola #algorithm #hardware #tool support
Algorithms, Data, Hardware and Tools: A Perfect Storm (AS), p. 2878.
KDD-2018-Walraven
Data Science and Entertainment Production (JW), p. 2879.
KDD-2018-Xing #algorithm #co-evolution #design #machine learning #named
SysML: On System and Algorithm Co-design for Practical Machine Learning (EPX), p. 2880.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.