BibSLEIGH
BibSLEIGH corpus
BibSLEIGH tags
BibSLEIGH bundles
BibSLEIGH people
EDIT!
CC-BY
Open Knowledge
XHTML 1.0 W3C Rec
CSS 2.1 W3C CanRec
email twitter
Travelled to:
1 × Brazil
1 × Finland
1 × France
1 × Germany
1 × Ireland
1 × Slovenia
1 × Switzerland
1 × The Netherlands
16 × USA
2 × China
3 × Canada
3 × United Kingdom
Collaborated with:
F.Radlinski Y.Yue K.Raman P.Shivaswamy T.Finley A.Swaminathan C.J.Yu B.Shaparenko S.Chen L.A.Granka G.Gay J.E.Hopcroft R.Klinkenberg T.Scheffer N.Ailon Z.S.Karnin J.Xu M.Kurup R.Kleinberg N.Cristianini J.Shawe-Taylor K.Morik P.Brockhausen S.Pohl T.Schnabel J.Gehrke R.Sipos J.L.Moore D.Turnbull I.Tsochantaridis T.Hofmann Y.Altun Y.Gao O.Chapelle Y.Zhang B.Pan H.Hembrooke
Talks about:
learn (14) structur (7) support (7) vector (7) bandit (6) feedback (5) machin (5) svms (5) data (5) use (5)

Person: Thorsten Joachims

DBLP DBLP: Joachims:Thorsten

Facilitated 2 volumes:

KDD 2015Ed
ICML 2010Ed

Contributed to:

ICML 20152015
ICML c2 20142014
KDD 20142014
ICML c3 20132013
KDD 20132013
CIKM 20122012
ICML 20122012
KDD 20122012
CIKM 20112011
ECIR 20112011
ICML 20112011
SIGIR 20102010
ICML 20092009
SIGIR 20092009
CIKM 20082008
ICML 20082008
KDD 20082008
KDD 20072007
SIGIR 20072007
KDD 20062006
ICML 20052005
KDD 20052005
SIGIR 20052005
ICML 20042004
SIGIR 20042004
ICML 20032003
KDD 20022002
ICML 20012001
SIGIR 20012001
ICML 20002000
ICML 19991999
ICML 19971997
JCDL 20072007

Wrote 44 papers:

ICML-2015-SwaminathanJ #feedback #learning
Counterfactual Risk Minimization: Learning from Logged Bandit Feedback (AS, TJ), pp. 814–823.
ICML-c2-2014-AilonKJ
Reducing Dueling Bandits to Cardinal Bandits (NA, ZSK, TJ), pp. 856–864.
KDD-2014-RamanJ
Methods for ordinal peer grading (KR, TJ), pp. 1037–1046.
ICML-c3-2013-RamanJSS #learning
Stable Coactive Learning via Perturbation (KR, TJ, PS, TS), pp. 837–845.
KDD-2013-ChenXJ #modelling #multi #probability #sequence
Multi-space probabilistic sequence modeling (SC, JX, TJ), pp. 865–873.
KDD-2013-RamanSGJ #big data #pipes and filters
Beyond myopic inference in big data pipelines (KR, AS, JG, TJ), pp. 86–94.
CIKM-2012-SiposSSJ #corpus #summary #using #word
Temporal corpus summarization using submodular word coverage (RS, AS, PS, TJ), pp. 754–763.
ICML-2012-ShivaswamyJ #learning #online #predict
Online Structured Prediction via Coactive Learning (PS, TJ), p. 12.
KDD-2012-ChenMTJ #metric #predict
Playlist prediction via metric embedding (SC, JLM, DT, TJ), pp. 714–722.
KDD-2012-RamanSJ #feedback #learning #online
Online learning to diversify from implicit feedback (KR, PS, TJ), pp. 705–713.
CIKM-2011-RamanJS #learning #ranking
Structured learning of two-level dynamic rankings (KR, TJ, PS), pp. 291–296.
ECIR-2011-Joachims #feedback
The Value of User Feedback (TJ), p. 6.
ICML-2011-YueJ
Beat the Mean Bandit (YY, TJ), pp. 241–248.
SIGIR-2010-YueGCZJ #evaluation #learning #retrieval #statistics
Learning more powerful test statistics for click-based retrieval evaluation (YY, YG, OC, YZ, TJ), pp. 507–514.
ICML-2009-YuJ #learning
Learning structural SVMs with latent variables (CNJY, TJ), pp. 1169–1176.
ICML-2009-YueJ #information retrieval #optimisation #problem
Interactively optimizing information retrieval systems as a dueling bandits problem (YY, TJ), pp. 1201–1208.
SIGIR-2009-ShaparenkoJ #documentation #identification #modelling
Identifying the original contribution of a document via language modeling (BS, TJ), pp. 696–697.
CIKM-2008-RadlinskiKJ #how #quality #question #retrieval
How does clickthrough data reflect retrieval quality? (FR, MK, TJ), pp. 43–52.
ICML-2008-FinleyJ
Training structural SVMs when exact inference is intractable (TF, TJ), pp. 304–311.
ICML-2008-RadlinskiKJ #learning #multi #ranking
Learning diverse rankings with multi-armed bandits (FR, RK, TJ), pp. 784–791.
ICML-2008-YueJ #predict #set #using
Predicting diverse subsets using structural SVMs (YY, TJ), pp. 1224–1231.
KDD-2008-YuJ #kernel #using
Training structural svms with kernels using sampled cuts (CNJY, TJ), pp. 794–802.
KDD-2007-RadlinskiJ #learning #ranking
Active exploration for learning rankings from clickthrough data (FR, TJ), pp. 570–579.
KDD-2007-ShaparenkoJ #database #documentation
Information genealogy: uncovering the flow of ideas in non-hyperlinked document databases (BS, TJ), pp. 619–628.
SIGIR-2007-YueFRJ #optimisation #precise
A support vector method for optimizing average precision (YY, TF, FR, TJ), pp. 271–278.
KDD-2006-Joachims #linear
Training linear SVMs in linear time (TJ), pp. 217–226.
ICML-2005-FinleyJ #clustering
Supervised clustering with support vector machines (TF, TJ), pp. 217–224.
ICML-2005-Joachims #metric #multi #performance
A support vector method for multivariate performance measures (TJ), pp. 377–384.
ICML-2005-JoachimsH #bound #clustering #correlation #fault
Error bounds for correlation clustering (TJ, JEH), pp. 385–392.
KDD-2005-RadlinskiJ #feedback #learning #query #rank
Query chains: learning to rank from implicit feedback (FR, TJ), pp. 239–248.
SIGIR-2005-JoachimsGPHG #feedback
Accurately interpreting clickthrough data as implicit feedback (TJ, LAG, BP, HH, GG), pp. 154–161.
ICML-2004-TsochantaridisHJA #machine learning
Support vector machine learning for interdependent and structured output spaces (IT, TH, TJ, YA).
SIGIR-2004-GrankaJG #analysis #behaviour
Eye-tracking analysis of user behavior in WWW search (LAG, TJ, GG), pp. 478–479.
ICML-2003-Joachims #clustering #graph #learning
Transductive Learning via Spectral Graph Partitioning (TJ), pp. 290–297.
KDD-2002-Joachims #optimisation #using
Optimizing search engines using clickthrough data (TJ), pp. 133–142.
ICML-2001-JoachimsCS #categorisation #hypermedia #kernel
Composite Kernels for Hypertext Categorisation (TJ, NC, JST), pp. 250–257.
SIGIR-2001-Joachims #classification #learning #statistics
A Statistical Learning Model of Text Classification for Support Vector Machines (TJ), pp. 128–136.
ICML-2000-Joachims #performance
Estimating the Generalization Performance of an SVM Efficiently (TJ), pp. 431–438.
ICML-2000-KlinkenbergJ #concept #detection
Detecting Concept Drift with Support Vector Machines (RK, TJ), pp. 487–494.
ICML-1999-Joachims #classification #using
Transductive Inference for Text Classification using Support Vector Machines (TJ), pp. 200–209.
ICML-1999-MorikBJ #approach #case study #knowledge-based #learning #monitoring #statistics
Combining Statistical Learning with a Knowledge-Based Approach — A Case Study in Intensive Care Monitoring (KM, PB, TJ), pp. 268–277.
ICML-1999-SchefferJ #analysis #fault
Expected Error Analysis for Model Selection (TS, TJ), pp. 361–370.
ICML-1997-Joachims #algorithm #analysis #categorisation #probability
A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization (TJ), pp. 143–151.
JCDL-2007-PohlRJ #library #recommendation
Recommending related papers based on digital library access records (SP, FR, TJ), pp. 417–418.

Bibliography of Software Language Engineering in Generated Hypertext (BibSLEIGH) is created and maintained by Dr. Vadim Zaytsev.
Hosted as a part of SLEBOK on GitHub.